Spaces:
Sleeping
Sleeping
AFischer1985
commited on
Commit
•
41ec323
1
Parent(s):
0408088
Initial commit
Browse files- README.md +8 -8
- requirements.txt +3 -0
- run.py +117 -0
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
|
|
1 |
---
|
2 |
-
title: RAG
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
-
app_file:
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
|
2 |
---
|
3 |
+
title: RAG-Interface-to-Hub
|
4 |
+
emoji: 🔥
|
5 |
+
colorFrom: indigo
|
6 |
+
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 3.47.1
|
9 |
+
app_file: run.py
|
10 |
pinned: false
|
11 |
+
hf_oauth: false
|
12 |
---
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
llama-cpp-python[server]
|
2 |
+
chromadb
|
3 |
+
sentence_transformers
|
run.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#########################################################################################
|
2 |
+
# Title: Gradio Interface to LLM-chatbot with RAG-funcionality and ChromaDB on HF-Hub
|
3 |
+
# Author: Andreas Fischer
|
4 |
+
# Date: December 29th, 2023
|
5 |
+
# Last update: December 29th, 2023
|
6 |
+
##########################################################################################
|
7 |
+
|
8 |
+
|
9 |
+
# Chroma-DB
|
10 |
+
#-----------
|
11 |
+
import os
|
12 |
+
import chromadb
|
13 |
+
dbPath="/home/af/Schreibtisch/gradio/Chroma/db"
|
14 |
+
if(os.path.exists(dbPath)==False):
|
15 |
+
dbPath="/home/user/app/db"
|
16 |
+
print(dbPath)
|
17 |
+
#client = chromadb.Client()
|
18 |
+
path=dbPath
|
19 |
+
client = chromadb.PersistentClient(path=path)
|
20 |
+
print(client.heartbeat())
|
21 |
+
print(client.get_version())
|
22 |
+
print(client.list_collections())
|
23 |
+
from chromadb.utils import embedding_functions
|
24 |
+
default_ef = embedding_functions.DefaultEmbeddingFunction()
|
25 |
+
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
|
26 |
+
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
|
27 |
+
print(str(client.list_collections()))
|
28 |
+
|
29 |
+
global collection
|
30 |
+
if("name=ChromaDB1" in str(client.list_collections())):
|
31 |
+
print("ChromaDB1 found!")
|
32 |
+
collection = client.get_collection(name="ChromaDB1", embedding_function=sentence_transformer_ef)
|
33 |
+
else:
|
34 |
+
print("ChromaDB1 created!")
|
35 |
+
collection = client.create_collection(
|
36 |
+
"ChromaDB1",
|
37 |
+
embedding_function=sentence_transformer_ef,
|
38 |
+
metadata={"hnsw:space": "cosine"})
|
39 |
+
|
40 |
+
collection.add(
|
41 |
+
documents=["The meaning of life is to love.", "This is a sentence", "This is a sentence too"],
|
42 |
+
metadatas=[{"source": "notion"}, {"source": "google-docs"}, {"source": "google-docs"}],
|
43 |
+
ids=["doc1", "doc2", "doc3"],
|
44 |
+
)
|
45 |
+
|
46 |
+
print("Database ready!")
|
47 |
+
print(collection.count())
|
48 |
+
|
49 |
+
|
50 |
+
# Model
|
51 |
+
#-------
|
52 |
+
|
53 |
+
from huggingface_hub import InferenceClient
|
54 |
+
import gradio as gr
|
55 |
+
|
56 |
+
client = InferenceClient(
|
57 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1"
|
58 |
+
#"mistralai/Mistral-7B-Instruct-v0.1"
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
# Gradio-GUI
|
63 |
+
#------------
|
64 |
+
|
65 |
+
import gradio as gr
|
66 |
+
import json
|
67 |
+
|
68 |
+
def format_prompt(message, history):
|
69 |
+
prompt = "<s>"
|
70 |
+
for user_prompt, bot_response in history:
|
71 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
72 |
+
prompt += f" {bot_response}</s> "
|
73 |
+
prompt += f"[INST] {message} [/INST]"
|
74 |
+
return prompt
|
75 |
+
|
76 |
+
def response(
|
77 |
+
prompt, history, temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0,
|
78 |
+
):
|
79 |
+
temperature = float(temperature)
|
80 |
+
if temperature < 1e-2: temperature = 1e-2
|
81 |
+
top_p = float(top_p)
|
82 |
+
generate_kwargs = dict(
|
83 |
+
temperature=temperature,
|
84 |
+
max_new_tokens=max_new_tokens,
|
85 |
+
top_p=top_p,
|
86 |
+
repetition_penalty=repetition_penalty,
|
87 |
+
do_sample=True,
|
88 |
+
seed=42,
|
89 |
+
)
|
90 |
+
addon=""
|
91 |
+
results=collection.query(
|
92 |
+
query_texts=[prompt],
|
93 |
+
n_results=2,
|
94 |
+
#where={"source": "google-docs"}
|
95 |
+
#where_document={"$contains":"search_string"}
|
96 |
+
)
|
97 |
+
dists=["<small>(relevance: "+str(round((1-d)*100/100))+";" for d in results['distances'][0]]
|
98 |
+
sources=["source: "+s["source"]+")</small>" for s in results['metadatas'][0]]
|
99 |
+
results=results['documents'][0]
|
100 |
+
combination = zip(results,dists,sources)
|
101 |
+
combination = [' '.join(triplets) for triplets in combination]
|
102 |
+
print(combination)
|
103 |
+
if(len(results)>1):
|
104 |
+
addon=" Bitte berücksichtige bei deiner Antwort ggf. folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n"+"\n".join(results)
|
105 |
+
system="Du bist ein KI-basiertes Assistenzsystem."+addon+"\n\nUser-Anliegen:"
|
106 |
+
#body={"prompt":system+"### Instruktion:\n"+message+"\n\n### Antwort:","max_tokens":500, "echo":"False","stream":"True"} #e.g. SauerkrautLM
|
107 |
+
formatted_prompt = format_prompt(system+"\n"+prompt, history)
|
108 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
109 |
+
output = ""
|
110 |
+
for response in stream:
|
111 |
+
output += response.token.text
|
112 |
+
yield output
|
113 |
+
output=output+"\n\n<br><details open><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>"
|
114 |
+
yield output
|
115 |
+
|
116 |
+
gr.ChatInterface(response, chatbot=gr.Chatbot(render_markdown=True),title="RAG-Interface").queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864)
|
117 |
+
print("Interface up and running!")
|