|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import chromadb |
|
dbPath="/home/af/Schreibtisch/gradio/Chroma/db" |
|
if(os.path.exists(dbPath)==False): |
|
dbPath="/home/user/app/db" |
|
print(dbPath) |
|
|
|
path=dbPath |
|
client = chromadb.PersistentClient(path=path) |
|
print(client.heartbeat()) |
|
print(client.get_version()) |
|
print(client.list_collections()) |
|
from chromadb.utils import embedding_functions |
|
default_ef = embedding_functions.DefaultEmbeddingFunction() |
|
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer") |
|
|
|
print(str(client.list_collections())) |
|
|
|
global collection |
|
if("name=ChromaDB1" in str(client.list_collections())): |
|
print("ChromaDB1 found!") |
|
collection = client.get_collection(name="ChromaDB1", embedding_function=sentence_transformer_ef) |
|
else: |
|
print("ChromaDB1 created!") |
|
collection = client.create_collection( |
|
"ChromaDB1", |
|
embedding_function=sentence_transformer_ef, |
|
metadata={"hnsw:space": "cosine"}) |
|
|
|
collection.add( |
|
documents=[ |
|
"Text generating AI model mistralai/Mixtral-8x7B-Instruct-v0.1: Suitable for text generation, e.g., social media content, marketing copy, blog posts, short stories, etc.", |
|
"Image generating AI model stabilityai/sdxl-turbo: Suitable for image generation, e.g., illustrations, graphics, AI art, etc.", |
|
"Audio transcribing AI model openai/whisper-large-v3: Suitable for audio-transcription in different languages", |
|
"Speech synthesizing AI model coqui/XTTS-v2: Suitable for generating audio from text and for voice-cloning", |
|
"Code generating AI model deepseek-ai/deepseek-coder-6.7b-instruct: Suitable for programming in Python, JavaScript, PHP, Bash and many other programming languages.", |
|
"Translation AI model Helsinki-NLP/opus-mt: Suitable for translating text, e.g., from English to German or vice versa", |
|
"Search result-integrating AI model phind/phind-v9-model: Suitable for researching current topics and for obtaining precise and up-to-date answers to questions based on web search results" |
|
], |
|
metadatas=[{"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}], |
|
ids=["ai1", "ai2", "ai3", "ai4", "ai5", "ai6", "ai7"], |
|
) |
|
|
|
print("Database ready!") |
|
print(collection.count()) |
|
|
|
|
|
|
|
|
|
onPrem=False |
|
myModel="mistralai/Mixtral-8x7B-Instruct-v0.1" |
|
if(onPrem==False): |
|
modelPath=myModel |
|
from huggingface_hub import InferenceClient |
|
import gradio as gr |
|
client = InferenceClient( |
|
model=modelPath, |
|
|
|
) |
|
else: |
|
import os |
|
import requests |
|
import subprocess |
|
|
|
|
|
modelPath="/home/af/gguf/models/Mixtral-8x7b-instruct-v0.1.Q4_0.gguf" |
|
if(os.path.exists(modelPath)==False): |
|
|
|
url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true" |
|
response = requests.get(url) |
|
with open("./Mixtral-8x7b-instruct.gguf", mode="wb") as file: |
|
file.write(response.content) |
|
print("Model downloaded") |
|
modelPath="./Mixtral-8x7b-instruct.gguf" |
|
print(modelPath) |
|
n="20" |
|
if("Mixtral-8x7b-instruct" in modelPath): n="0" |
|
command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "8", "--n_gpu_layers", n] |
|
subprocess.Popen(command) |
|
print("Server ready!") |
|
|
|
|
|
|
|
|
|
if(False): |
|
from transformers import AutoTokenizer |
|
|
|
|
|
mod="VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct" |
|
tok=AutoTokenizer.from_pretrained(mod) |
|
cha=[{"role":"system","content":"A"},{"role":"user","content":"B"},{"role":"assistant","content":"C"}] |
|
res=tok.apply_chat_template(cha) |
|
print(tok.decode(res)) |
|
cha=[{"role":"user","content":"U1"},{"role":"assistant","content":"A1"},{"role":"user","content":"U2"},{"role":"assistant","content":"A2"}] |
|
res=tok.apply_chat_template(cha) |
|
print(tok.decode(res)) |
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
import json |
|
import re |
|
|
|
def extend_prompt(message="", history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4, removeHTML=True): |
|
startOfString="" |
|
if zeichenlimit is None: zeichenlimit=1000000000 |
|
template0=" [INST]{system}\n [/INST] </s>" |
|
template1=" [INST] {message} [/INST]" |
|
template2=" {response}</s>" |
|
if("command-r" in modelPath): |
|
|
|
template0="<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|> {system}<|END_OF_TURN_TOKEN|>" |
|
template1="<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{message}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" |
|
template2="{response}<|END_OF_TURN_TOKEN|>" |
|
if("Gemma-" in modelPath): |
|
template0="<start_of_turn>user{system}</end_of_turn>" |
|
template1="<start_of_turn>user{message}</end_of_turn><start_of_turn>model" |
|
template2="{response}</end_of_turn>" |
|
if("Mixtral-8x22B-Instruct" in modelPath): |
|
startOfString="<s>" |
|
template0="[INST]{system}\n [/INST] </s>" |
|
template1="[INST] {message}[/INST]" |
|
template2=" {response}</s>" |
|
if("Mixtral-8x7b-instruct" in modelPath): |
|
startOfString="<s>" |
|
template0=" [INST]{system}\n [/INST] </s>" |
|
template1=" [INST] {message} [/INST]" |
|
template2=" {response}</s>" |
|
if("Mistral-7B-Instruct" in modelPath): |
|
startOfString="<s>" |
|
template0="[INST]{system}\n [/INST]</s>" |
|
template1="[INST] {message} [/INST]" |
|
template2=" {response}</s>" |
|
if("Openchat-3.5" in modelPath): |
|
template0="GPT4 Correct User: {system}<|end_of_turn|>GPT4 Correct Assistant: Okay.<|end_of_turn|>" |
|
template1="GPT4 Correct User: {message}<|end_of_turn|>GPT4 Correct Assistant: " |
|
template2="{response}<|end_of_turn|>" |
|
if(("Discolm_german_7b" in modelPath) or ("SauerkrautLM-7b-HerO" in modelPath)): |
|
template0="<|im_start|>system\n{system}<|im_end|>\n" |
|
template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" |
|
template2="{response}<|im_end|>\n" |
|
if("Llama-3-SauerkrautLM-8b-Instruct" in modelPath): |
|
template0="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system}<|eot_id|>" |
|
template1="<|start_header_id|>user<|end_header_id|>\n\n{message}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" |
|
template2="{response}<|eot_id|>\n" |
|
if("WizardLM-13B-V1.2" in modelPath): |
|
template0="{system} " |
|
template1="USER: {message} ASSISTANT: " |
|
template2="{response}</s>" |
|
if("Phi-2" in modelPath): |
|
template0="Instruct: {system}\nOutput: Okay.\n" |
|
template1="Instruct: {message}\nOutput:" |
|
template2="{response}\n" |
|
prompt = "" |
|
if RAGAddon is not None: |
|
system += RAGAddon |
|
if system is not None: |
|
prompt += template0.format(system=system) |
|
if history is not None: |
|
for user_message, bot_response in history[-historylimit:]: |
|
if user_message is None: user_message = "" |
|
if bot_response is None: bot_response = "" |
|
bot_response = re.sub("\n\n<details(| open)>.*?</details>","", bot_response, flags=re.DOTALL) |
|
if removeHTML==True: bot_response = re.sub("<(.*?)>","\n", bot_response) |
|
if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit]) |
|
if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit]) |
|
if message is not None: prompt += template1.format(message=message[:zeichenlimit]) |
|
if system2 is not None: |
|
prompt += system2 |
|
return startOfString+prompt |
|
|
|
|
|
|
|
def response( |
|
message, history, temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0, |
|
): |
|
addon="" |
|
first_message = history[0][0] if history else message |
|
last_message = history[-1][0] if history else message |
|
results=collection.query( |
|
query_texts=[last_message], |
|
n_results=2, |
|
|
|
|
|
) |
|
dists=["<br><small>(relevance: "+str(round((1-d)*100)/100)+";" for d in results['distances'][0]] |
|
sources=["source: "+s["source"]+")</small>" for s in results['metadatas'][0]] |
|
results=results['documents'][0] |
|
combination = zip(results,dists,sources) |
|
combination = [' '.join(triplets) for triplets in combination] |
|
print(combination) |
|
if(len(results)>1): |
|
addon=" Bitte berücksichtige bei deiner Antwort auf die Fragen des Users ggf. folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n"+"\n".join(results) |
|
system="Du bist ein deutschsprachiges KI-basiertes Assistenzsystem, das zu jedem Anliegen möglichst geeignete KI-Tools empfiehlt." |
|
|
|
|
|
removeHTML=True |
|
prompt=extend_prompt( |
|
message, |
|
history, |
|
system, |
|
addon, |
|
None, |
|
historylimit=2, |
|
removeHTML=removeHTML |
|
) |
|
|
|
|
|
|
|
|
|
print("AI running on prem!" if(onPrem) else "AI running HFHub!") |
|
print(prompt) |
|
if(onPrem==False): |
|
temperature=float(0.9) |
|
max_new_tokens=1000 |
|
top_p=0.95 |
|
repetition_penalty=1.0 |
|
if temperature < 1e-2: temperature = 1e-2 |
|
top_p = float(top_p) |
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
seed=42, |
|
) |
|
stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
response = "" |
|
|
|
for text in stream: |
|
part=text.token.text |
|
|
|
response += part |
|
if removeHTML==True: response = re.sub("<(.*?)>","\n", response) |
|
yield response |
|
if(True): |
|
response=response+"\n\n<details open><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>" |
|
yield response |
|
|
|
if(onPrem==True): |
|
|
|
url="http://0.0.0.0:2600/v1/completions" |
|
body={"prompt":prompt,"max_tokens":None, "echo":"False","stream":"True"} |
|
if("Discolm_german_7b" in modelPath): body.update({"stop": ["<|im_end|>"]}) |
|
if("Gemma-" in modelPath): body.update({"stop": ["<|im_end|>","</end_of_turn>"]}) |
|
response="" |
|
buffer="" |
|
|
|
|
|
for text in requests.post(url, json=body, stream=True): |
|
if buffer is None: buffer="" |
|
buffer=str("".join(buffer)) |
|
|
|
text=text.decode('utf-8') |
|
if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text) |
|
|
|
buffer=buffer.split('"finish_reason": null}]}') |
|
if(len(buffer)==1): |
|
buffer="".join(buffer) |
|
pass |
|
if(len(buffer)==2): |
|
part=buffer[0]+'"finish_reason": null}]}' |
|
if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "") |
|
try: |
|
part = str(json.loads(part)["choices"][0]["text"]) |
|
|
|
response=response+part |
|
buffer="" |
|
except Exception as e: |
|
print("Exception:"+str(e)) |
|
pass |
|
if removeHTML==True: response = re.sub("<(.*?)>","\n", response) |
|
yield response |
|
if(True): |
|
response=response+"\n\n<details open><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>" |
|
yield response |
|
|
|
|
|
gr.ChatInterface(response, chatbot=gr.Chatbot(value=[[None,"Herzlich willkommen! Ich bin ein KI-basiertes Assistenzsystem, das für jede Anfrage die am besten geeigneten KI-Tools empfiehlt.<br>Aktuell bin ich wenig mehr als eine Tech-Demo und kenne nur 7 KI-Modelle - also sei bitte nicht zu streng mit mir.<br>Was ist dein Anliegen?"]],render_markdown=True),title="German AI-RAG-Interface to the Hugging Face Hub").queue().launch(share=True) |
|
print("Interface up and running!") |