A19grey's picture
move CUDA calling out of main function for some hugging face error skeptical the LLM got this one right
39f1439
raw
history blame
11.2 kB
import gradio as gr
from PIL import Image
import src.depth_pro as depth_pro
import numpy as np
import matplotlib.pyplot as plt
import subprocess
import spaces
import torch
import tempfile
import os
import trimesh
import time
import timm
import cv2
from datetime import datetime
print(f"Timm version: {timm.__version__}")
subprocess.run(["bash", "get_pretrained_models.sh"])
@spaces.GPU(duration=20)
def load_model_and_predict(image_path):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model, transform = depth_pro.create_model_and_transforms()
model = model.to(device)
model.eval()
result = depth_pro.load_rgb(image_path)
if len(result) < 2:
raise ValueError(f"Unexpected result from load_rgb: {result}")
image = result[0]
f_px = result[-1]
print(f"Extracted focal length: {f_px}")
image = transform(image).to(device)
with torch.no_grad():
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"].cpu().numpy()
focallength_px = prediction["focallength_px"]
return depth, focallength_px
def resize_image(image_path, max_size=1024):
"""
Resize the input image to ensure its largest dimension does not exceed max_size.
Maintains the aspect ratio and saves the resized image as a temporary PNG file.
Args:
image_path (str): Path to the input image.
max_size (int, optional): Maximum size for the largest dimension. Defaults to 1024.
Returns:
str: Path to the resized temporary image file.
"""
with Image.open(image_path) as img:
# Calculate the resizing ratio while maintaining aspect ratio
ratio = max_size / max(img.size)
new_size = tuple([int(x * ratio) for x in img.size])
# Resize the image using LANCZOS filter for high-quality downsampling
img = img.resize(new_size, Image.LANCZOS)
# Save the resized image to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
img.save(temp_file, format="PNG")
return temp_file.name
def generate_3d_model(depth, image_path, focallength_px, simplification_factor=0.8, smoothing_iterations=1, thin_threshold=0.01):
"""
Generate a textured 3D mesh from the depth map and the original image.
"""
# Load the RGB image and convert to a NumPy array
image = np.array(Image.open(image_path))
# Ensure depth is a NumPy array
if isinstance(depth, torch.Tensor):
depth = depth.cpu().numpy()
# Resize depth to match image dimensions if necessary
if depth.shape != image.shape[:2]:
depth = cv2.resize(depth, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR)
height, width = depth.shape
print(f"3D model generation - Depth shape: {depth.shape}")
print(f"3D model generation - Image shape: {image.shape}")
# Compute camera intrinsic parameters
fx = fy = float(focallength_px) # Ensure focallength_px is a float
cx, cy = width / 2, height / 2 # Principal point at the image center
# Create a grid of (u, v) pixel coordinates
u = np.arange(0, width)
v = np.arange(0, height)
uu, vv = np.meshgrid(u, v)
# Convert pixel coordinates to real-world 3D coordinates using the pinhole camera model
Z = depth.flatten()
X = ((uu.flatten() - cx) * Z) / fx
Y = ((vv.flatten() - cy) * Z) / fy
# Stack the coordinates to form vertices (X, Y, Z)
vertices = np.vstack((X, Y, Z)).T
# Normalize RGB colors to [0, 1] for vertex coloring
colors = image.reshape(-1, 3) / 255.0
# Generate faces by connecting adjacent vertices to form triangles
faces = []
for i in range(height - 1):
for j in range(width - 1):
idx = i * width + j
# Triangle 1
faces.append([idx, idx + width, idx + 1])
# Triangle 2
faces.append([idx + 1, idx + width, idx + width + 1])
faces = np.array(faces)
# Create the mesh using Trimesh with vertex colors
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_colors=colors)
# Mesh cleaning and improvement steps
print("Original mesh - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
# 1. Mesh simplification
target_faces = int(len(mesh.faces) * simplification_factor)
mesh = mesh.simplify_quadric_decimation(face_count=target_faces)
print("After simplification - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
# 2. Remove small disconnected components
components = mesh.split(only_watertight=False)
if len(components) > 1:
areas = np.array([c.area for c in components])
mesh = components[np.argmax(areas)]
print("After removing small components - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
# 3. Smooth the mesh
for _ in range(smoothing_iterations):
mesh = mesh.smoothed()
print("After smoothing - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
# 4. Remove thin features
mesh = remove_thin_features(mesh, thickness_threshold=thin_threshold)
print("After removing thin features - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
# Export the mesh to OBJ files with unique filenames
timestamp = int(time.time())
view_model_path = f'view_model_{timestamp}.obj'
download_model_path = f'download_model_{timestamp}.obj'
mesh.export(view_model_path)
mesh.export(download_model_path)
return view_model_path, download_model_path
def remove_thin_features(mesh, thickness_threshold=0.01):
"""
Remove thin features from the mesh.
"""
# Calculate edge lengths
edges = mesh.edges_unique
edge_points = mesh.vertices[edges]
edge_lengths = np.linalg.norm(edge_points[:, 0] - edge_points[:, 1], axis=1)
# Identify short edges
short_edges = edges[edge_lengths < thickness_threshold]
# Collapse short edges
for edge in short_edges:
try:
mesh.collapse_edge(edge)
except:
pass # Skip if edge collapse fails
# Remove any newly created degenerate faces
mesh.remove_degenerate_faces()
return mesh
def regenerate_3d_model(depth_csv, image_path, focallength_px, simplification_factor, smoothing_iterations, thin_threshold):
# Load depth from CSV
depth = np.loadtxt(depth_csv, delimiter=',')
# Generate new 3D model with updated parameters
view_model_path, download_model_path = generate_3d_model(
depth, image_path, focallength_px,
simplification_factor, smoothing_iterations, thin_threshold
)
return view_model_path, download_model_path
def predict_depth(input_image):
temp_file = None
try:
print(f"Input image type: {type(input_image)}")
print(f"Input image path: {input_image}")
temp_file = resize_image(input_image)
print(f"Resized image path: {temp_file}")
depth, focallength_px = load_model_and_predict(temp_file)
if depth.ndim != 2:
depth = depth.squeeze()
print(f"Depth map shape: {depth.shape}")
plt.figure(figsize=(10, 10))
plt.imshow(depth, cmap='gist_rainbow')
plt.colorbar(label='Depth [m]')
plt.title(f'Predicted Depth Map - Min: {np.min(depth):.1f}m, Max: {np.max(depth):.1f}m')
plt.axis('off')
output_path = "depth_map.png"
plt.savefig(output_path)
plt.close()
raw_depth_path = "raw_depth_map.csv"
np.savetxt(raw_depth_path, depth, delimiter=',')
view_model_path, download_model_path = generate_3d_model(depth, temp_file, focallength_px)
return output_path, f"Focal length: {focallength_px:.2f} pixels", raw_depth_path, view_model_path, download_model_path, temp_file, focallength_px
except Exception as e:
import traceback
error_message = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_message)
return None, error_message, None, None, None, None, None
finally:
if temp_file and os.path.exists(temp_file):
os.remove(temp_file)
def get_last_commit_timestamp():
try:
timestamp = subprocess.check_output(['git', 'log', '-1', '--format=%cd', '--date=iso']).decode('utf-8').strip()
return datetime.fromisoformat(timestamp).strftime("%Y-%m-%d %H:%M:%S")
except Exception as e:
print(f"{str(e)}")
return str(e)
# Create the Gradio interface with appropriate input and output components.
last_updated = get_last_commit_timestamp()
with gr.Blocks() as iface:
gr.Markdown("# DepthPro Demo with 3D Visualization")
gr.Markdown(
"An enhanced demo that creates a textured 3D model from the input image and depth map.\n\n"
"Forked from https://huggingface.co/spaces/akhaliq/depth-pro and model from https://huggingface.co/apple/DepthPro\n"
"**Instructions:**\n"
"1. Upload an image.\n"
"2. The app will predict the depth map, display it, and provide the focal length.\n"
"3. Download the raw depth data as a CSV file.\n"
"4. View the generated 3D model textured with the original image.\n"
"5. Adjust parameters and click 'Regenerate 3D Model' to update the model.\n"
"6. Download the 3D model as an OBJ file if desired.\n\n"
f"Last updated: {last_updated}"
)
with gr.Row():
input_image = gr.Image(type="filepath", label="Input Image")
depth_map = gr.Image(type="filepath", label="Depth Map")
focal_length = gr.Textbox(label="Focal Length")
raw_depth_csv = gr.File(label="Download Raw Depth Map (CSV)")
with gr.Row():
view_3d_model = gr.Model3D(label="View 3D Model")
download_3d_model = gr.File(label="Download 3D Model (OBJ)")
with gr.Row():
simplification_factor = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Simplification Factor")
smoothing_iterations = gr.Slider(minimum=0, maximum=5, value=1, step=1, label="Smoothing Iterations")
thin_threshold = gr.Slider(minimum=0.001, maximum=0.1, value=0.01, step=0.001, label="Thin Feature Threshold")
regenerate_button = gr.Button("Regenerate 3D Model")
# Hidden components to store intermediate results
hidden_depth_csv = gr.State()
hidden_image_path = gr.State()
hidden_focal_length = gr.State()
input_image.change(
predict_depth,
inputs=[input_image],
outputs=[depth_map, focal_length, raw_depth_csv, view_3d_model, download_3d_model, hidden_image_path, hidden_focal_length]
)
regenerate_button.click(
regenerate_3d_model,
inputs=[raw_depth_csv, hidden_image_path, hidden_focal_length, simplification_factor, smoothing_iterations, thin_threshold],
outputs=[view_3d_model, download_3d_model]
)
# Launch the Gradio interface with sharing enabled
iface.launch(share=True)