Suparious commited on
Commit
459a6cb
1 Parent(s): 3dfef10

add a model card

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md CHANGED
@@ -1,3 +1,72 @@
1
  ---
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: senseable/WestLake-7B-v2
3
  license: apache-2.0
4
+ language:
5
+ - en
6
+ library_name: transformers
7
+ model_creator: Common Sense
8
+ model_name: WestLake 7B v2
9
+ model_type: mistral
10
+ pipeline_tag: text-generation
11
+ prompt_template: '<|im_start|>system
12
+
13
+ {system_message}<|im_end|>
14
+
15
+ <|im_start|>user
16
+
17
+ {prompt}<|im_end|>
18
+
19
+ <|im_start|>assistant
20
+
21
+ '
22
+ quantized_by: Suparious
23
  ---
24
+ # WestLake 7B v2 laser - AWQ
25
+
26
+ - Model creator: [Common Sense](https://huggingface.co/senseable)
27
+ - Original model: [WestLake 7B v2](https://huggingface.co/senseable/WestLake-7B-v2)
28
+ - Fine Tuning: [cognitivecomputations](https://huggingface.co/cognitivecomputations/WestLake-7B-v2-laser)
29
+
30
+ It follows the implementation of [laserRMT](https://github.com/cognitivecomputations/laserRMT)
31
+
32
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585ffb10eeafbd678d4b3fe/jnqnl8a_zYYMqJoBpX8yS.png)
33
+
34
+ ## Model description
35
+
36
+ This repo contains AWQ model files for [Common Sense's WestLake 7B v2](https://huggingface.co/senseable/WestLake-7B-v2).
37
+
38
+ These files were quantised using hardware kindly provided by [SolidRusT Networks](https://solidrust.net/).
39
+
40
+ ### About AWQ
41
+
42
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
43
+
44
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
45
+
46
+ It is supported by:
47
+
48
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
49
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
50
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
51
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
52
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
53
+
54
+ ## Prompt template: ChatML
55
+
56
+ ```plaintext
57
+ <|im_start|>system
58
+ {system_message}<|im_end|>
59
+ <|im_start|>user
60
+ {prompt}<|im_end|>
61
+ <|im_start|>assistant
62
+ ```
63
+
64
+ Also working with Basic Mistral format:
65
+
66
+ ```plaintext
67
+ <|system|>
68
+ </s>
69
+ <|user|>
70
+ {prompt}</s>
71
+ <|assistant|>
72
+ ```