File size: 7,382 Bytes
3d83e81 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f c3c133a 666a62f 3d83e81 c3c133a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
---
base_model: mlabonne/AlphaMonarch-7B
dataset:
- mlabonne/truthy-dpo-v0.1
- mlabonne/distilabel-intel-orca-dpo-pairs
- mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
inference: false
language:
- en
library_name: transformers
license: cc-by-nc-4.0
merged_models:
- mlabonne/NeuralMonarch-7B
model-index:
- name: AlphaMonarch-7B
results:
- dataset:
args:
num_few_shot: 25
config: ARC-Challenge
name: AI2 Reasoning Challenge (25-Shot)
split: test
type: ai2_arc
metrics:
- name: normalized accuracy
type: acc_norm
value: 73.04
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/AlphaMonarch-7B
task:
name: Text Generation
type: text-generation
- dataset:
args:
num_few_shot: 10
name: HellaSwag (10-Shot)
split: validation
type: hellaswag
metrics:
- name: normalized accuracy
type: acc_norm
value: 89.18
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/AlphaMonarch-7B
task:
name: Text Generation
type: text-generation
- dataset:
args:
num_few_shot: 5
config: all
name: MMLU (5-Shot)
split: test
type: cais/mmlu
metrics:
- name: accuracy
type: acc
value: 64.4
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/AlphaMonarch-7B
task:
name: Text Generation
type: text-generation
- dataset:
args:
num_few_shot: 0
config: multiple_choice
name: TruthfulQA (0-shot)
split: validation
type: truthful_qa
metrics:
- type: mc2
value: 77.91
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/AlphaMonarch-7B
task:
name: Text Generation
type: text-generation
- dataset:
args:
num_few_shot: 5
config: winogrande_xl
name: Winogrande (5-shot)
split: validation
type: winogrande
metrics:
- name: accuracy
type: acc
value: 84.69
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/AlphaMonarch-7B
task:
name: Text Generation
type: text-generation
- dataset:
args:
num_few_shot: 5
config: main
name: GSM8k (5-shot)
split: test
type: gsm8k
metrics:
- name: accuracy
type: acc
value: 66.72
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/AlphaMonarch-7B
task:
name: Text Generation
type: text-generation
model_creator: mlabonne
model_name: AlphaMonarch-7B
model_type: mistral
pipeline_tag: text-generation
prompt_template: '<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'
quantized_by: Suparious
tags:
- merge
- lazymergekit
- dpo
- rlhf
- quantized
- 4-bit
- AWQ
- text-generation
- autotrain_compatible
- endpoints_compatible
- chatml
---
# mlabonne/AlphaMonarch-7B AWQ
- Model creator: [mlabonne](https://huggingface.co/mlabonne)
- Original model: [AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/TI7C8F2gk43gmI9U2L0uk.jpeg)
## Model Summary
**tl;dr: AlphaMonarch-7B is a new DPO merge that retains all the reasoning abilities of the very best merges and significantly improves its conversational abilities. Kind of the best of both worlds in a 7B model. 🎉**
AlphaMonarch-7B is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset.
It is based on a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/OmniTruthyBeagle-7B-v0](https://huggingface.co/mlabonne/OmniTruthyBeagle-7B-v0)
* [mlabonne/NeuBeagle-7B](https://huggingface.co/mlabonne/NeuBeagle-7B)
* [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B)
Special thanks to [Jon Durbin](https://huggingface.co/jondurbin), [Intel](https://huggingface.co/Intel), [Argilla](https://huggingface.co/argilla), and [Teknium](https://huggingface.co/teknium) for the preference datasets.
**Try the demo**: https://huggingface.co/spaces/mlabonne/AlphaMonarch-7B-GGUF-Chat
## How to use
### Install the necessary packages
```bash
pip install --upgrade autoawq autoawq-kernels
```
### Example Python code
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
model_path = "solidrust/AlphaMonarch-7B-AWQ"
system_message = "You are Alpha, incarnated as a powerful AI."
# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
streamer = TextStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
return_tensors='pt').input_ids.cuda()
# Generate output
generation_output = model.generate(tokens,
streamer=streamer,
max_new_tokens=512)
```
### About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
It is supported by:
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
## Prompt template: ChatML
```plaintext
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
|