File size: 9,318 Bytes
0b1122d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6771
- Answer: {'precision': 0.7053571428571429, 'recall': 0.7812113720642769, 'f1': 0.7413489736070381, 'number': 809}
- Header: {'precision': 0.29770992366412213, 'recall': 0.3277310924369748, 'f1': 0.312, 'number': 119}
- Question: {'precision': 0.763716814159292, 'recall': 0.8103286384976526, 'f1': 0.7863325740318907, 'number': 1065}
- Overall Precision: 0.7112
- Overall Recall: 0.7697
- Overall F1: 0.7393
- Overall Accuracy: 0.8036

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                        | Header                                                                                                       | Question                                                                                                     | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.7668        | 1.0   | 10   | 1.5655          | {'precision': 0.01564945226917058, 'recall': 0.012360939431396786, 'f1': 0.013812154696132598, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.31925675675675674, 'recall': 0.17746478873239438, 'f1': 0.22812311406155703, 'number': 1065} | 0.1617            | 0.0998         | 0.1234     | 0.3599           |
| 1.4335        | 2.0   | 20   | 1.2504          | {'precision': 0.22972972972972974, 'recall': 0.2521631644004944, 'f1': 0.24042427813789036, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.391304347826087, 'recall': 0.5492957746478874, 'f1': 0.45703125, 'number': 1065}             | 0.3311            | 0.3959         | 0.3606     | 0.5926           |
| 1.1215        | 3.0   | 30   | 0.9771          | {'precision': 0.4570273003033367, 'recall': 0.5587144622991347, 'f1': 0.5027808676307008, 'number': 809}      | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.5460829493087558, 'recall': 0.6676056338028169, 'f1': 0.6007604562737643, 'number': 1065}    | 0.5022            | 0.5835         | 0.5398     | 0.6802           |
| 0.8632        | 4.0   | 40   | 0.7960          | {'precision': 0.5714285714285714, 'recall': 0.7317676143386898, 'f1': 0.6417344173441735, 'number': 809}      | {'precision': 0.0379746835443038, 'recall': 0.025210084033613446, 'f1': 0.030303030303030304, 'number': 119} | {'precision': 0.633201581027668, 'recall': 0.752112676056338, 'f1': 0.6875536480686696, 'number': 1065}      | 0.5866            | 0.7005         | 0.6385     | 0.7572           |
| 0.6913        | 5.0   | 50   | 0.7202          | {'precision': 0.6335797254487856, 'recall': 0.7416563658838071, 'f1': 0.683371298405467, 'number': 809}       | {'precision': 0.10752688172043011, 'recall': 0.08403361344537816, 'f1': 0.09433962264150944, 'number': 119}  | {'precision': 0.6907216494845361, 'recall': 0.7549295774647887, 'f1': 0.721399730820996, 'number': 1065}     | 0.6416            | 0.7095         | 0.6738     | 0.7808           |
| 0.5758        | 6.0   | 60   | 0.6812          | {'precision': 0.6677248677248677, 'recall': 0.7799752781211372, 'f1': 0.7194982896237172, 'number': 809}      | {'precision': 0.17857142857142858, 'recall': 0.16806722689075632, 'f1': 0.17316017316017318, 'number': 119}  | {'precision': 0.6919315403422983, 'recall': 0.7971830985915493, 'f1': 0.7408376963350787, 'number': 1065}    | 0.6567            | 0.7526         | 0.7014     | 0.7947           |
| 0.4993        | 7.0   | 70   | 0.6593          | {'precision': 0.6597938144329897, 'recall': 0.7911001236093943, 'f1': 0.7195053400786959, 'number': 809}      | {'precision': 0.21875, 'recall': 0.17647058823529413, 'f1': 0.19534883720930232, 'number': 119}              | {'precision': 0.7158703071672355, 'recall': 0.787793427230047, 'f1': 0.7501117568171659, 'number': 1065}     | 0.6702            | 0.7526         | 0.7091     | 0.7951           |
| 0.4397        | 8.0   | 80   | 0.6633          | {'precision': 0.6749192680301399, 'recall': 0.7750309023485785, 'f1': 0.721518987341772, 'number': 809}       | {'precision': 0.23943661971830985, 'recall': 0.2857142857142857, 'f1': 0.26053639846743293, 'number': 119}   | {'precision': 0.7274290627687017, 'recall': 0.7943661971830986, 'f1': 0.7594254937163376, 'number': 1065}    | 0.6746            | 0.7561         | 0.7130     | 0.7987           |
| 0.396         | 9.0   | 90   | 0.6605          | {'precision': 0.6875699888017918, 'recall': 0.7589616810877626, 'f1': 0.7215041128084607, 'number': 809}      | {'precision': 0.25203252032520324, 'recall': 0.2605042016806723, 'f1': 0.25619834710743805, 'number': 119}   | {'precision': 0.7344013490725126, 'recall': 0.8178403755868544, 'f1': 0.7738782763216348, 'number': 1065}    | 0.6885            | 0.7607         | 0.7228     | 0.8026           |
| 0.3578        | 10.0  | 100  | 0.6624          | {'precision': 0.6842105263157895, 'recall': 0.7873918417799752, 'f1': 0.7321839080459769, 'number': 809}      | {'precision': 0.2773109243697479, 'recall': 0.2773109243697479, 'f1': 0.2773109243697479, 'number': 119}     | {'precision': 0.7476231633535004, 'recall': 0.812206572769953, 'f1': 0.7785778577857785, 'number': 1065}     | 0.6955            | 0.7702         | 0.7310     | 0.8022           |
| 0.3249        | 11.0  | 110  | 0.6678          | {'precision': 0.6865671641791045, 'recall': 0.796044499381953, 'f1': 0.7372638809387521, 'number': 809}       | {'precision': 0.273972602739726, 'recall': 0.33613445378151263, 'f1': 0.3018867924528302, 'number': 119}     | {'precision': 0.7584973166368515, 'recall': 0.7962441314553991, 'f1': 0.7769125057260651, 'number': 1065}    | 0.6957            | 0.7687         | 0.7304     | 0.8010           |
| 0.3021        | 12.0  | 120  | 0.6681          | {'precision': 0.7120535714285714, 'recall': 0.788627935723115, 'f1': 0.7483870967741936, 'number': 809}       | {'precision': 0.2923076923076923, 'recall': 0.31932773109243695, 'f1': 0.3052208835341365, 'number': 119}    | {'precision': 0.7547826086956522, 'recall': 0.8150234741784037, 'f1': 0.7837471783295711, 'number': 1065}    | 0.7096            | 0.7747         | 0.7407     | 0.8045           |
| 0.2895        | 13.0  | 130  | 0.6755          | {'precision': 0.7122060470324748, 'recall': 0.7861557478368356, 'f1': 0.7473560517038778, 'number': 809}      | {'precision': 0.2887323943661972, 'recall': 0.3445378151260504, 'f1': 0.31417624521072796, 'number': 119}    | {'precision': 0.7595048629531388, 'recall': 0.8065727699530516, 'f1': 0.7823315118397085, 'number': 1065}    | 0.7091            | 0.7707         | 0.7386     | 0.8026           |
| 0.2734        | 14.0  | 140  | 0.6768          | {'precision': 0.7093541202672605, 'recall': 0.7873918417799752, 'f1': 0.7463386057410661, 'number': 809}      | {'precision': 0.28368794326241137, 'recall': 0.33613445378151263, 'f1': 0.3076923076923077, 'number': 119}   | {'precision': 0.7570175438596491, 'recall': 0.8103286384976526, 'f1': 0.7827664399092971, 'number': 1065}    | 0.7067            | 0.7727         | 0.7383     | 0.8026           |
| 0.2804        | 15.0  | 150  | 0.6771          | {'precision': 0.7053571428571429, 'recall': 0.7812113720642769, 'f1': 0.7413489736070381, 'number': 809}      | {'precision': 0.29770992366412213, 'recall': 0.3277310924369748, 'f1': 0.312, 'number': 119}                 | {'precision': 0.763716814159292, 'recall': 0.8103286384976526, 'f1': 0.7863325740318907, 'number': 1065}     | 0.7112            | 0.7697         | 0.7393     | 0.8036           |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.1.0+cpu
- Datasets 2.14.5
- Tokenizers 0.14.1