--- license: mit datasets: - squad_v2 language: - en library_name: transformers pipeline_tag: question-answering tags: - deberta - deberta-v3 - question-answering model-index: - name: sjrhuschlee/deberta-v3-base-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 85.648 name: Exact Match - type: f1 value: 88.728 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 87.862 name: Exact Match - type: f1 value: 93.924 name: F1 --- # deberta-v3-base for QA This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering. ## Overview **Language model:** deberta-v3-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Infrastructure**: 1x NVIDIA 3070 ## Model Usage ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "sjrhuschlee/deberta-v3-base-squad2" # a) Using pipelines nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) qa_input = { 'question': 'Where do I live?', 'context': 'My name is Sarah and I live in London' } res = nlp(qa_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Metrics ```bash # Squad v2 { "eval_HasAns_exact": 82.72604588394061, "eval_HasAns_f1": 88.89430905100325, "eval_HasAns_total": 5928, "eval_NoAns_exact": 88.56181665264928, "eval_NoAns_f1": 88.56181665264928, "eval_NoAns_total": 5945, "eval_best_exact": 85.64810915522614, "eval_best_exact_thresh": 0.0, "eval_best_f1": 88.72782481717712, "eval_best_f1_thresh": 0.0, "eval_exact": 85.64810915522614, "eval_f1": 88.72782481717726, "eval_runtime": 219.6226, "eval_samples": 11951, "eval_samples_per_second": 54.416, "eval_steps_per_second": 2.268, "eval_total": 11873 } # Squad { "eval_exact_match": 87.86187322611164, "eval_f1": 93.92373735474943, "eval_runtime": 195.2115, "eval_samples": 10618, "eval_samples_per_second": 54.392, "eval_steps_per_second": 2.269 } ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4.0 ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3