--- license: apache-2.0 base_model: openai/whisper-base tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Breeze DSW Telugu - base results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs te_in type: google/fleurs config: te_in split: test args: te_in metrics: - name: Wer type: wer value: 37.45436058603319 --- # Breeze DSW Telugu - base This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the google/fleurs te_in dataset. It achieves the following results on the evaluation set: - Loss: 0.3372 - Wer: 37.4544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2937 | 2.03 | 200 | 0.3237 | 42.5614 | | 0.1611 | 5.02 | 400 | 0.2756 | 38.9148 | | 0.0889 | 8.01 | 600 | 0.2930 | 38.1106 | | 0.0456 | 11.0 | 800 | 0.3372 | 37.4544 | | 0.0229 | 13.03 | 1000 | 0.3982 | 37.9258 | | 0.0103 | 16.02 | 1200 | 0.4473 | 38.2678 | | 0.0042 | 19.02 | 1400 | 0.4836 | 37.8980 | | 0.0025 | 22.01 | 1600 | 0.5083 | 37.7317 | | 0.002 | 24.04 | 1800 | 0.5220 | 37.8010 | | 0.0018 | 27.03 | 2000 | 0.5269 | 37.9027 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0