silk-road commited on
Commit
c498a9d
1 Parent(s): cd1adf1

Upload tokenizer

Browse files
README.md ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
special_tokens_map.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|user|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<|observation|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ }
17
+ ]
18
+ }
tokenization_chatglm.py ADDED
@@ -0,0 +1,328 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import re
4
+ from typing import List, Optional, Union, Dict
5
+ from sentencepiece import SentencePieceProcessor
6
+ from transformers import PreTrainedTokenizer
7
+ from transformers.utils import logging, PaddingStrategy
8
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
9
+
10
+
11
+ logger = logging.get_logger(__name__)
12
+
13
+
14
+ class SPTokenizer:
15
+ def __init__(self, model_path: str):
16
+ # reload tokenizer
17
+ assert os.path.isfile(model_path), model_path
18
+ self.sp_model = SentencePieceProcessor(model_file=model_path)
19
+
20
+ # BOS / EOS token IDs
21
+ self.n_words: int = self.sp_model.vocab_size()
22
+ self.bos_id: int = self.sp_model.bos_id()
23
+ self.eos_id: int = self.sp_model.eos_id()
24
+ self.pad_id: int = self.sp_model.unk_id()
25
+ assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
26
+
27
+ role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
28
+ special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
29
+ self.special_tokens = {}
30
+ self.index_special_tokens = {}
31
+ for token in special_tokens:
32
+ self.special_tokens[token] = self.n_words
33
+ self.index_special_tokens[self.n_words] = token
34
+ self.n_words += 1
35
+ self.role_special_token_expression = "|".join([re.escape(token) for token in special_tokens]) # for apply_chat_template
36
+
37
+ def tokenize(self, s: str, encode_special_tokens=False):
38
+ if encode_special_tokens:
39
+ last_index = 0
40
+ t = []
41
+ for match in re.finditer(self.role_special_token_expression, s):
42
+ if last_index < match.start():
43
+ t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()]))
44
+ t.append(s[match.start():match.end()])
45
+ last_index = match.end()
46
+ if last_index < len(s):
47
+ t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
48
+ return t
49
+ else:
50
+ return self.sp_model.EncodeAsPieces(s)
51
+
52
+ def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
53
+ assert type(s) is str
54
+ t = self.sp_model.encode(s)
55
+ if bos:
56
+ t = [self.bos_id] + t
57
+ if eos:
58
+ t = t + [self.eos_id]
59
+ return t
60
+
61
+ def decode(self, t: List[int]) -> str:
62
+ text, buffer = "", []
63
+ for token in t:
64
+ if token in self.index_special_tokens:
65
+ if buffer:
66
+ text += self.sp_model.decode(buffer)
67
+ buffer = []
68
+ text += self.index_special_tokens[token]
69
+ else:
70
+ buffer.append(token)
71
+ if buffer:
72
+ text += self.sp_model.decode(buffer)
73
+ return text
74
+
75
+ def decode_tokens(self, tokens: List[str]) -> str:
76
+ text = self.sp_model.DecodePieces(tokens)
77
+ return text
78
+
79
+ def convert_token_to_id(self, token):
80
+ """ Converts a token (str) in an id using the vocab. """
81
+ if token in self.special_tokens:
82
+ return self.special_tokens[token]
83
+ return self.sp_model.PieceToId(token)
84
+
85
+ def convert_id_to_token(self, index):
86
+ """Converts an index (integer) in a token (str) using the vocab."""
87
+ if index in self.index_special_tokens:
88
+ return self.index_special_tokens[index]
89
+ if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0 or index > self.sp_model.vocab_size():
90
+ return ""
91
+ return self.sp_model.IdToPiece(index)
92
+
93
+
94
+ class ChatGLMTokenizer(PreTrainedTokenizer):
95
+
96
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
97
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
98
+
99
+ def __init__(
100
+ self,
101
+ vocab_file,
102
+ padding_side="left",
103
+ clean_up_tokenization_spaces=False,
104
+ encode_special_tokens=False,
105
+ **kwargs
106
+ ):
107
+ self.name = "GLMTokenizer"
108
+ self.vocab_file = vocab_file
109
+ self.tokenizer = SPTokenizer(vocab_file)
110
+ self.special_tokens = {
111
+ "<bos>": self.tokenizer.bos_id,
112
+ "<eos>": self.tokenizer.eos_id,
113
+ "<unk>": self.tokenizer.pad_id,
114
+ "<pad>": self.tokenizer.pad_id
115
+ }
116
+ self.encode_special_tokens = encode_special_tokens
117
+
118
+ super().__init__(
119
+ padding_side=padding_side,
120
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
121
+ **kwargs
122
+ )
123
+
124
+ def get_command(self, token):
125
+ if token in self.special_tokens:
126
+ return self.special_tokens[token]
127
+ assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
128
+ return self.tokenizer.special_tokens[token]
129
+
130
+ @property
131
+ def unk_token(self) -> str:
132
+ return self.tokenizer.sp_model.IdToPiece(self.get_command("<unk>"))
133
+
134
+ @property
135
+ def pad_token(self) -> str:
136
+ return self.tokenizer.sp_model.IdToPiece(self.get_command("<pad>"))
137
+
138
+ @property
139
+ def eos_token(self) -> str:
140
+ return self.tokenizer.sp_model.IdToPiece(self.get_command("<eos>"))
141
+
142
+ @property
143
+ def unk_token_id(self) -> int:
144
+ return self.get_command("<unk>")
145
+
146
+ @property
147
+ def pad_token_id(self) -> int:
148
+ return self.get_command("<pad>")
149
+
150
+ @property
151
+ def eos_token_id(self):
152
+ return self.get_command("<eos>")
153
+
154
+ @unk_token.setter
155
+ def unk_token(self, value):
156
+ logger.warning("Setting unk_token is not supported, use the default one.")
157
+
158
+ @pad_token.setter
159
+ def pad_token(self, value):
160
+ logger.warning("Setting pad_token is not supported, use the default one.")
161
+
162
+ @eos_token.setter
163
+ def eos_token(self, value):
164
+ logger.warning("Setting eos_token is not supported, use the default one.")
165
+
166
+ @property
167
+ def vocab_size(self):
168
+ return self.tokenizer.n_words
169
+
170
+ def get_vocab(self):
171
+ """ Returns vocab as a dict """
172
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
173
+ vocab.update(self.added_tokens_encoder)
174
+ return vocab
175
+
176
+ def _tokenize(self, text, **kwargs):
177
+ return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
178
+
179
+ def _convert_token_to_id(self, token):
180
+ """ Converts a token (str) in an id using the vocab. """
181
+ return self.tokenizer.convert_token_to_id(token)
182
+
183
+ def _convert_id_to_token(self, index):
184
+ """Converts an index (integer) in a token (str) using the vocab."""
185
+ return self.tokenizer.convert_id_to_token(index)
186
+
187
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
188
+ return self.tokenizer.decode_tokens(tokens)
189
+
190
+ def save_vocabulary(self, save_directory, filename_prefix=None):
191
+ """
192
+ Save the vocabulary and special tokens file to a directory.
193
+
194
+ Args:
195
+ save_directory (`str`):
196
+ The directory in which to save the vocabulary.
197
+ filename_prefix (`str`, *optional*):
198
+ An optional prefix to add to the named of the saved files.
199
+
200
+ Returns:
201
+ `Tuple(str)`: Paths to the files saved.
202
+ """
203
+ if os.path.isdir(save_directory):
204
+ vocab_file = os.path.join(
205
+ save_directory, self.vocab_files_names["vocab_file"]
206
+ )
207
+ else:
208
+ vocab_file = save_directory
209
+
210
+ with open(self.vocab_file, 'rb') as fin:
211
+ proto_str = fin.read()
212
+
213
+ with open(vocab_file, "wb") as writer:
214
+ writer.write(proto_str)
215
+
216
+ return (vocab_file,)
217
+
218
+ def get_prefix_tokens(self):
219
+ prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
220
+ return prefix_tokens
221
+
222
+ def build_single_message(self, role, metadata, message):
223
+ assert role in ["system", "user", "assistant", "observation"], role
224
+ role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
225
+ message_tokens = self.tokenizer.encode(message)
226
+ tokens = role_tokens + message_tokens
227
+ return tokens
228
+
229
+ def build_chat_input(self, query, history=None, role="user"):
230
+ if history is None:
231
+ history = []
232
+ input_ids = []
233
+ for item in history:
234
+ content = item["content"]
235
+ if item["role"] == "system" and "tools" in item:
236
+ content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
237
+ input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
238
+ input_ids.extend(self.build_single_message(role, "", query))
239
+ input_ids.extend([self.get_command("<|assistant|>")])
240
+ return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
241
+
242
+ def build_inputs_with_special_tokens(
243
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
244
+ ) -> List[int]:
245
+ """
246
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
247
+ adding special tokens. A BERT sequence has the following format:
248
+
249
+ - single sequence: `[CLS] X [SEP]`
250
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
251
+
252
+ Args:
253
+ token_ids_0 (`List[int]`):
254
+ List of IDs to which the special tokens will be added.
255
+ token_ids_1 (`List[int]`, *optional*):
256
+ Optional second list of IDs for sequence pairs.
257
+
258
+ Returns:
259
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
260
+ """
261
+ prefix_tokens = self.get_prefix_tokens()
262
+ token_ids_0 = prefix_tokens + token_ids_0
263
+ if token_ids_1 is not None:
264
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
265
+ return token_ids_0
266
+
267
+ def _pad(
268
+ self,
269
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
270
+ max_length: Optional[int] = None,
271
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
272
+ pad_to_multiple_of: Optional[int] = None,
273
+ return_attention_mask: Optional[bool] = None,
274
+ ) -> dict:
275
+ """
276
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
277
+
278
+ Args:
279
+ encoded_inputs:
280
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
281
+ max_length: maximum length of the returned list and optionally padding length (see below).
282
+ Will truncate by taking into account the special tokens.
283
+ padding_strategy: PaddingStrategy to use for padding.
284
+
285
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
286
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
287
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
288
+ The tokenizer padding sides are defined in self.padding_side:
289
+
290
+ - 'left': pads on the left of the sequences
291
+ - 'right': pads on the right of the sequences
292
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
293
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
294
+ `>= 7.5` (Volta).
295
+ return_attention_mask:
296
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
297
+ """
298
+ # Load from model defaults
299
+ assert self.padding_side == "left"
300
+
301
+ required_input = encoded_inputs[self.model_input_names[0]]
302
+ seq_length = len(required_input)
303
+
304
+ if padding_strategy == PaddingStrategy.LONGEST:
305
+ max_length = len(required_input)
306
+
307
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
308
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
309
+
310
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
311
+
312
+ # Initialize attention mask if not present.
313
+ if "attention_mask" not in encoded_inputs:
314
+ encoded_inputs["attention_mask"] = [1] * seq_length
315
+
316
+ if "position_ids" not in encoded_inputs:
317
+ encoded_inputs["position_ids"] = list(range(seq_length))
318
+
319
+ if needs_to_be_padded:
320
+ difference = max_length - len(required_input)
321
+
322
+ if "attention_mask" in encoded_inputs:
323
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
324
+ if "position_ids" in encoded_inputs:
325
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
326
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
327
+
328
+ return encoded_inputs
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
3
+ size 1018370
tokenizer_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "64795": {
4
+ "content": "<|user|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "64797": {
12
+ "content": "<|observation|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ }
19
+ },
20
+ "additional_special_tokens": [
21
+ "<|user|>",
22
+ "<|observation|>"
23
+ ],
24
+ "auto_map": {
25
+ "AutoTokenizer": [
26
+ "tokenization_chatglm.ChatGLMTokenizer",
27
+ null
28
+ ]
29
+ },
30
+ "chat_template": "{% for message in messages %}{% if loop.first %}[gMASK]sop<|{{ message['role'] }}|> \n {{ message['content'] }}{% else %}<|{{ message['role'] }}|> \n {{ message['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}",
31
+ "clean_up_tokenization_spaces": false,
32
+ "do_lower_case": false,
33
+ "eos_token": "</s>",
34
+ "model_max_length": 1000000000000000019884624838656,
35
+ "pad_token": "<unk>",
36
+ "padding_side": "left",
37
+ "remove_space": false,
38
+ "tokenizer_class": "ChatGLMTokenizer",
39
+ "unk_token": "<unk>"
40
+ }