File size: 2,816 Bytes
9f595a4 3c91a87 3074480 3c91a87 529bea9 1a7e9ae 529bea9 efe2834 529bea9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
# A Multi-task learning model with two prediction heads
* First prediction head classifies between keyword sentences vs statements/questions
* Second prediction head corresponds to classifier for statements vs questions
## Scores
##### Spaadia SQuaD Test acc: **0.9891**
##### Quora Keyword Pairs Test acc: **0.98048**
## Datasets:
Quora Keyword Pairs: https://www.kaggle.com/stefanondisponibile/quora-question-keyword-pairs
Spaadia SQuaD pairs: https://www.kaggle.com/shahrukhkhan/questions-vs-statementsclassificationdataset
## Article
[Medium article](https://medium.com/@shahrukhx01/multi-task-learning-with-transformers-part-1-multi-prediction-heads-b7001cf014bf)
## Demo Notebook
[Colab Notebook Multi-task Query classifiers](https://colab.research.google.com/drive/1R7WcLHxDsVvZXPhr5HBgIWa3BlSZKY6p?usp=sharing)
## Clone the model repo
```bash
git clone https://huggingface.co/shahrukhx01/bert-multitask-query-classifiers
```
```python
%cd bert-multitask-query-classifiers/
```
## Load model
```python
from multitask_model import BertForSequenceClassification
from transformers import AutoTokenizer
import torch
model = BertForSequenceClassification.from_pretrained(
"shahrukhx01/bert-multitask-query-classifiers",
task_labels_map={"quora_keyword_pairs": 2, "spaadia_squad_pairs": 2},
)
tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/bert-multitask-query-classifiers")
```
## Run inference on both Tasks
```python
from multitask_model import BertForSequenceClassification
from transformers import AutoTokenizer
import torch
model = BertForSequenceClassification.from_pretrained(
"shahrukhx01/bert-multitask-query-classifiers",
task_labels_map={"quora_keyword_pairs": 2, "spaadia_squad_pairs": 2},
)
tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/bert-multitask-query-classifiers")
## Keyword vs Statement/Question Classifier
input = ["keyword query", "is this a keyword query?"]
task_name="quora_keyword_pairs"
sequence = tokenizer(input, padding=True, return_tensors="pt")['input_ids']
logits = model(sequence, task_name=task_name)[0]
predictions = torch.argmax(torch.softmax(logits, dim=1).detach().cpu(), axis=1)
for input, prediction in zip(input, predictions):
print(f"task: {task_name}, input: {input} \n prediction=> {prediction}")
print()
## Statement vs Question Classifier
input = ["where is berlin?", "is this a keyword query?", "Berlin is in Germany."]
task_name="spaadia_squad_pairs"
sequence = tokenizer(input, padding=True, return_tensors="pt")['input_ids']
logits = model(sequence, task_name=task_name)[0]
predictions = torch.argmax(torch.softmax(logits, dim=1).detach().cpu(), axis=1)
for input, prediction in zip(input, predictions):
print(f"task: {task_name}, input: {input} \n prediction=> {prediction}")
print()
``` |