--- language: - en license: llama2 library_name: transformers tags: - merge - mergekit - lazymergekit datasets: - teknium/openhermes - cognitivecomputations/dolphin base_model: - cognitivecomputations/dolphin-llama2-7b - Tensoic/Llama-2-openhermes pipeline_tag: text-generation model-index: - name: OpenDolphinHermes_Llama2_7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 55.03 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 78.74 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 52.25 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 46.1 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 73.16 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 20.17 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B name: Open LLM Leaderboard --- # OpenDolphinHermes_Llama2_7B

SynthIQ

mergekit SLERP of these two models * [cognitivecomputations/dolphin-llama2-7b](https://huggingface.co/cognitivecomputations/dolphin-llama2-7b) * [Tensoic/Llama-2-openhermes](https://huggingface.co/Tensoic/Llama-2-openhermes) ## 🧩 Configuration ```yaml slices: - sources: - model: cognitivecomputations/dolphin-llama2-7b layer_range: [0, 32] - model: Tensoic/Llama-2-openhermes layer_range: [0, 32] merge_method: slerp base_model: Tensoic/Llama-2-openhermes parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` # Prompt Template (ChatML) ```text <|im_start|>system You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. <|im_end|> <|im_start|>user { .Prompt} <|im_end|> <|im_start|>assistant ``` # OpenLLM Leaderboard | T | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | |---|--------------------------------------------|---------|------|-----------|-------|------------|------------|-------| | 0 | meta-llama/llama-2-13b-hf | 55.69 | 59.39 | 82.13 | 55.77 | 37.38 | 76.64 | 22.82 | | 1 | sethuiyer/OpenDolphinHermes_Llama2_7B | 54.24 | 55.03| 78.74 | 52.25 | 46.1 | 73.16 | 20.17 | | 2 | togethercomputer/Llama-2-7B-32K-Instruct | 50.02 | 51.11| 78.51 | 46.11 | 44.86 | 73.88 | 5.69 | | 3 | togethercomputer/LLaMa-2-7B-32K | 47.07 | 47.53| 76.14 | 43.33 | 39.23 | 71.9 | 4.32 | ## Why? I wanted a LLaMa2-7B model which is as good as base LLaMa2-13B model. ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "sethuiyer/OpenDolphinHermes_Llama2_7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` Output: ```text A large language model is a type of artificial intelligence system that has been trained on a massive amount of data, often millions or even billions of words, to learn the patterns and relationships between words and phrases. These models can then be used to generate new text, understand and translate languages, and perform various natural language processing tasks. They have become increasingly popular in recent years due to advances in machine learning technology and their ability to achieve high levels of accuracy and performance on natural language processing tasks. Examples of large language models include GPT-2, BERT, and T5. ``` ## Thanks Thanks to Google Colab for the compute. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__OpenDolphinHermes_Llama2_7B) | Metric |Value| |---------------------------------|----:| |Avg. |54.24| |AI2 Reasoning Challenge (25-Shot)|55.03| |HellaSwag (10-Shot) |78.74| |MMLU (5-Shot) |52.25| |TruthfulQA (0-shot) |46.10| |Winogrande (5-shot) |73.16| |GSM8k (5-shot) |20.17|