seriy21 commited on
Commit
08d5b13
1 Parent(s): cbade14

PPO LunarLander-v2

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 286.36 +/- 12.71
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4ce7601290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4ce7601320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4ce76013b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4ce7601440>", "_build": "<function ActorCriticPolicy._build at 0x7f4ce76014d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4ce7601560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4ce76015f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4ce7601680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4ce7601710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4ce76017a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4ce7601830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4ce76542a0>"}, "verbose": 3, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651676507.2078216, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2bP70fxZK7Zv1zPNYxab6Rv5W8JaGUPgAAgD8AAAAAJlumPbrdbD4Tqem9sIfRvh6Qu7wdVXe8AAAAAAAAAADmC789haqXu4WMZLsGyIs8ajrTvCa0bj0AAIA/AACAP5p2r73hYu85cruxMxoHFjJBa0i78KVcswAAgD8AAIA/AAa0vOH4nbovtcy6K3ewtWrgxrpNouw5AACAPwAAgD9mVYU88eNWPP3iuzyb64i+TdUxvOaIZb0AAAAAAAAAAOaGEj3qDrc/xqT2PhQcLD0qfAE7y3b6PQAAAAAAAAAAgLeBveUO+z5sYyO81VPCvkc5Db2TWsW8AAAAAAAAAABmY3o9FJKfuvU/fDkvc400WkkIOxpdkbgAAIA/AACAP7apVL4CXiA/jFW8O/+bE79d6+q+OjBnPQAAAAAAAAAAwCTAPSTxkT+LveM+pyYZvzj1Gj4wuJs+AAAAAAAAAADNkQI9coREPmP3cL3Sz5u+eD2svAaGYLsAAAAAAAAAADO8Dz4qsGA/epHGPWJ5G78FMB4+anSyvQAAAAAAAAAAWgkZPoeumT7w3ku+4lTdvuSZATzle6S7AAAAAAAAAAC62XU+itG2Pkvueb4zMN2+7uYlPlTaPL4AAAAAAAAAAJrEHb3aNLU/endCv9r9Lrz1Kdg84CslPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILo1feOXzcUCUhpRSlIwBbJRLv4wBdJRHQLkbd7wazeJ1fZQoaAZoCWgPQwhN1xNdV4FxQJSGlFKUaBVLw2gWR0C5G4xB7eEadX2UKGgGaAloD0MIr3rAPGReb0CUhpRSlGgVS7xoFkdAuRusFINEw3V9lChoBmgJaA9DCCWxpNx9X3FAlIaUUpRoFUvHaBZHQLkbtBcRlH11fZQoaAZoCWgPQwiJQPUP4uJxQJSGlFKUaBVL02gWR0C5G9ieRPoFdX2UKGgGaAloD0MIE4JV9bK7cUCUhpRSlGgVS65oFkdAuRvj+BH09XV9lChoBmgJaA9DCLAe963WRXJAlIaUUpRoFUvYaBZHQLkb5nQpnYh1fZQoaAZoCWgPQwi0VUlk3/RxQJSGlFKUaBVL3mgWR0C5G/TollbvdX2UKGgGaAloD0MIaM9lalJ+cECUhpRSlGgVS8JoFkdAuRwYOwxFiXV9lChoBmgJaA9DCGoX00x3BHFAlIaUUpRoFUvRaBZHQLkcLWjGkvd1fZQoaAZoCWgPQwi2oPfGUFVwQJSGlFKUaBVLz2gWR0C5HGJjH4oJdX2UKGgGaAloD0MIdjbkn1mvcECUhpRSlGgVS8BoFkdAuRxwskIHDHV9lChoBmgJaA9DCMsr19smVHFAlIaUUpRoFUveaBZHQLkceHGjsUt1fZQoaAZoCWgPQwhJ2SJp93hwQJSGlFKUaBVLw2gWR0C5HK/oJRfndX2UKGgGaAloD0MI/MIrSZ7HckCUhpRSlGgVS8doFkdAuRzY9QoCuHV9lChoBmgJaA9DCFis4SI3C3NAlIaUUpRoFUvsaBZHQLkc/vc8DCB1fZQoaAZoCWgPQwgnhXmPc5lyQJSGlFKUaBVLu2gWR0C5HQOndfsvdX2UKGgGaAloD0MIhssqbIbtbkCUhpRSlGgVS8BoFkdAuR0Uu+RHPXV9lChoBmgJaA9DCP3c0JTdvnJAlIaUUpRoFUvbaBZHQLkdHfj0cwR1fZQoaAZoCWgPQwi8I2O1udNyQJSGlFKUaBVL8GgWR0C5HS9Ba9sadX2UKGgGaAloD0MIYkhOJi75c0CUhpRSlGgVS8RoFkdAuR1CqYJE6XV9lChoBmgJaA9DCGQke4RaM3FAlIaUUpRoFUvPaBZHQLkdYn2qT8p1fZQoaAZoCWgPQwjYuz/eK0l0QJSGlFKUaBVL02gWR0C5HWv0dzXCdX2UKGgGaAloD0MI2h694X5Bc0CUhpRSlGgVS+doFkdAuR2egvlEJHV9lChoBmgJaA9DCJY9CWzOzG9AlIaUUpRoFUvVaBZHQLkdoqp97Wx1fZQoaAZoCWgPQwhy/FBpxJZBQJSGlFKUaBVLfGgWR0C5Hb0waisXdX2UKGgGaAloD0MIvLA1W/lAb0CUhpRSlGgVS8toFkdAuR3Zea8Yh3V9lChoBmgJaA9DCMxB0NGq6HBAlIaUUpRoFUvFaBZHQLkd5KPn0TV1fZQoaAZoCWgPQwhXYMjqFuBwQJSGlFKUaBVLzWgWR0C5HevAfuCxdX2UKGgGaAloD0MIBD3UtuGKckCUhpRSlGgVS/FoFkdAuR3t0xM363V9lChoBmgJaA9DCLA3MSSnDHJAlIaUUpRoFUvMaBZHQLkeI+RHPNV1fZQoaAZoCWgPQwhsPUM4prdwQJSGlFKUaBVLzWgWR0C5Hn3a8Hv+dX2UKGgGaAloD0MIkl7U7tczc0CUhpRSlGgVS81oFkdAuR6QYcebNXV9lChoBmgJaA9DCI7LuKlBAHFAlIaUUpRoFUvVaBZHQLkeqoy9EkV1fZQoaAZoCWgPQwg0g/jADp1vQJSGlFKUaBVL0GgWR0C5HrNTP0I1dX2UKGgGaAloD0MIlFD6QkisckCUhpRSlGgVS+hoFkdAuR71Frl/6XV9lChoBmgJaA9DCOCD1y6tGXJAlIaUUpRoFUvZaBZHQLke+fCyhSN1fZQoaAZoCWgPQwh6i4f3nH5xQJSGlFKUaBVNEwFoFkdAuR8BYnv2G3V9lChoBmgJaA9DCFjJx+4Cy3BAlIaUUpRoFUvaaBZHQLkfBkiD/VB1fZQoaAZoCWgPQwjNAu0OqXNvQJSGlFKUaBVLwGgWR0C5HwqgyuZDdX2UKGgGaAloD0MI8Q9benRdckCUhpRSlGgVS71oFkdAuR8gGY8dP3V9lChoBmgJaA9DCPxuumUH7XFAlIaUUpRoFUvfaBZHQLkfQW/8EV51fZQoaAZoCWgPQwh2jCsuDp1xQJSGlFKUaBVLvWgWR0C5H08My8BddX2UKGgGaAloD0MIrG9gcuNucUCUhpRSlGgVS8toFkdAuR9Uw+MZP3V9lChoBmgJaA9DCFzoSgQqCXBAlIaUUpRoFUvQaBZHQLkfaHj6vaF1fZQoaAZoCWgPQwjrkJvhxnhwQJSGlFKUaBVL0GgWR0C5H28H8jzJdX2UKGgGaAloD0MIsyPVd35lcUCUhpRSlGgVS+hoFkdAuR/VRpDeCXV9lChoBmgJaA9DCNUI/Uy9YXFAlIaUUpRoFUvGaBZHQLkf/PsAvL51fZQoaAZoCWgPQwiWJTrLLAxyQJSGlFKUaBVLvGgWR0C5IA2XTmW/dX2UKGgGaAloD0MILdFZZtH3cECUhpRSlGgVS+doFkdAuSAsizLOiXV9lChoBmgJaA9DCKUvhJw3RHJAlIaUUpRoFUveaBZHQLkgR4CZF5R1fZQoaAZoCWgPQwguxysQvR9xQJSGlFKUaBVLxmgWR0C5IGfeHi3odX2UKGgGaAloD0MI0Jm0qfoxcECUhpRSlGgVS7toFkdAuSBoCPp6hXV9lChoBmgJaA9DCOnzUUZcTXBAlIaUUpRoFUvAaBZHQLkgiZX+2mZ1fZQoaAZoCWgPQwjAB69dGipzQJSGlFKUaBVL2WgWR0C5IJabz9S/dX2UKGgGaAloD0MIxVT6CWcjcUCUhpRSlGgVS91oFkdAuSCie5Fw1nV9lChoBmgJaA9DCP64/fKJKXNAlIaUUpRoFUvoaBZHQLkgqtMPBi11fZQoaAZoCWgPQwhKz/QS4/FuQJSGlFKUaBVLwGgWR0C5IK5Nj9XLdX2UKGgGaAloD0MI0XZM3RU1bUCUhpRSlGgVS8NoFkdAuSC87bL2YnV9lChoBmgJaA9DCI9U3/nFJ3NAlIaUUpRoFUvFaBZHQLkg3Bj4Hop1fZQoaAZoCWgPQwhU46WbxPZyQJSGlFKUaBVL5GgWR0C5IPa/h2nsdX2UKGgGaAloD0MIqkVEMfnEcUCUhpRSlGgVS+NoFkdAuSEHPBzmwXV9lChoBmgJaA9DCKRQFr6+tnNAlIaUUpRoFUvMaBZHQLkhSukDZDl1fZQoaAZoCWgPQwhauReYFatwQJSGlFKUaBVLxGgWR0C5IWRufmLcdX2UKGgGaAloD0MIlnfVA6aecECUhpRSlGgVS8hoFkdAuSF6+HrQgXV9lChoBmgJaA9DCFn60AX14m5AlIaUUpRoFUvIaBZHQLkhmFBY3eh1fZQoaAZoCWgPQwhhqpm1VHByQJSGlFKUaBVL3mgWR0C5Idwuh9LIdX2UKGgGaAloD0MIvi7Df/rUcECUhpRSlGgVS9NoFkdAuSHjvqkdm3V9lChoBmgJaA9DCDXPEfnuDHNAlIaUUpRoFUvfaBZHQLkh+xLTQVt1fZQoaAZoCWgPQwiduByvQERvQJSGlFKUaBVLyGgWR0C5If8bBGhFdX2UKGgGaAloD0MIo1huafVgcUCUhpRSlGgVS95oFkdAuSIZm8M/hXV9lChoBmgJaA9DCOj0vBvLnnFAlIaUUpRoFUvFaBZHQLkiIIatLct1fZQoaAZoCWgPQwh/+s+a385xQJSGlFKUaBVL2mgWR0C5IjW74BV/dX2UKGgGaAloD0MIaCEBo0u9cUCUhpRSlGgVS69oFkdAuSI53wCr93V9lChoBmgJaA9DCGlRn+SOEnNAlIaUUpRoFUvjaBZHQLkiOoaUA1h1fZQoaAZoCWgPQwhOfotOFpRzQJSGlFKUaBVL+mgWR0C5ImxUFSsKdX2UKGgGaAloD0MInmD/dS7jcUCUhpRSlGgVS+doFkdAuSKCkRBeHHV9lChoBmgJaA9DCODaiZIQhnFAlIaUUpRoFUvhaBZHQLkipwMYuTR1fZQoaAZoCWgPQwhI/mDguXluQJSGlFKUaBVLymgWR0C5IsF5OafBdX2UKGgGaAloD0MIJ7wEp74rc0CUhpRSlGgVS9RoFkdAuSLrqKP4mHV9lChoBmgJaA9DCFSqRNkbWXBAlIaUUpRoFUvAaBZHQLki+gkC3gF1fZQoaAZoCWgPQwgExvoGJk5xQJSGlFKUaBVL6WgWR0C5Iyr2criEdX2UKGgGaAloD0MI0QZgA2JmcECUhpRSlGgVS7RoFkdAuSNGlabF0nV9lChoBmgJaA9DCCe9b3ztUW9AlIaUUpRoFUvCaBZHQLkjSr92ovV1fZQoaAZoCWgPQwjlRSbgl7twQJSGlFKUaBVLy2gWR0C5I1RxHXmOdX2UKGgGaAloD0MIpUqUvSXncECUhpRSlGgVS9JoFkdAuSOEBgeA/nV9lChoBmgJaA9DCNVeRNtx0XJAlIaUUpRoFUvJaBZHQLkjj7GvOhV1fZQoaAZoCWgPQwhREhJpG8ZxQJSGlFKUaBVLyWgWR0C5I5aHoHLSdX2UKGgGaAloD0MIyOpWz8ljc0CUhpRSlGgVS8xoFkdAuSO0w22oenV9lChoBmgJaA9DCPJetTJh9nJAlIaUUpRoFUvYaBZHQLkjxmf5DZ11fZQoaAZoCWgPQwgb1H5rJ8xwQJSGlFKUaBVL32gWR0C5I9eyzHCGdX2UKGgGaAloD0MI/DcvTvx2cUCUhpRSlGgVS89oFkdAuSPsWRA8jnV9lChoBmgJaA9DCJDdBUrKmXJAlIaUUpRoFUu/aBZHQLkkCKdhAnl1fZQoaAZoCWgPQwg7iQj/YjdxQJSGlFKUaBVL1mgWR0C5JA2Gyon8dX2UKGgGaAloD0MICrsoeuBTbkCUhpRSlGgVS79oFkdAuSQhC2MKkXV9lChoBmgJaA9DCOCAlq5gVXFAlIaUUpRoFUvCaBZHQLkkXq814xF1fZQoaAZoCWgPQwji5H6HIo1xQJSGlFKUaBVLy2gWR0C5JGHXNC7cdX2UKGgGaAloD0MIPIcyVAXdcUCUhpRSlGgVS8toFkdAuSSgIQe3hHV9lChoBmgJaA9DCOkKthHPinFAlIaUUpRoFUvJaBZHQLkkuQCCBf91fZQoaAZoCWgPQwgcYVER51ZxQJSGlFKUaBVLw2gWR0C5JLuGKyfMdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 2048, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb97c7d16562c7b87a0a0f3b8090c6109c953826ce22b0b09d64abc3632c932e
3
+ size 143982
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4ce7601290>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4ce7601320>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4ce76013b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4ce7601440>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4ce76014d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4ce7601560>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4ce76015f0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4ce7601680>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4ce7601710>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4ce76017a0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4ce7601830>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f4ce76542a0>"
20
+ },
21
+ "verbose": 3,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 2031616,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651676507.2078216,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2bP70fxZK7Zv1zPNYxab6Rv5W8JaGUPgAAgD8AAAAAJlumPbrdbD4Tqem9sIfRvh6Qu7wdVXe8AAAAAAAAAADmC789haqXu4WMZLsGyIs8ajrTvCa0bj0AAIA/AACAP5p2r73hYu85cruxMxoHFjJBa0i78KVcswAAgD8AAIA/AAa0vOH4nbovtcy6K3ewtWrgxrpNouw5AACAPwAAgD9mVYU88eNWPP3iuzyb64i+TdUxvOaIZb0AAAAAAAAAAOaGEj3qDrc/xqT2PhQcLD0qfAE7y3b6PQAAAAAAAAAAgLeBveUO+z5sYyO81VPCvkc5Db2TWsW8AAAAAAAAAABmY3o9FJKfuvU/fDkvc400WkkIOxpdkbgAAIA/AACAP7apVL4CXiA/jFW8O/+bE79d6+q+OjBnPQAAAAAAAAAAwCTAPSTxkT+LveM+pyYZvzj1Gj4wuJs+AAAAAAAAAADNkQI9coREPmP3cL3Sz5u+eD2svAaGYLsAAAAAAAAAADO8Dz4qsGA/epHGPWJ5G78FMB4+anSyvQAAAAAAAAAAWgkZPoeumT7w3ku+4lTdvuSZATzle6S7AAAAAAAAAAC62XU+itG2Pkvueb4zMN2+7uYlPlTaPL4AAAAAAAAAAJrEHb3aNLU/endCv9r9Lrz1Kdg84CslPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILo1feOXzcUCUhpRSlIwBbJRLv4wBdJRHQLkbd7wazeJ1fZQoaAZoCWgPQwhN1xNdV4FxQJSGlFKUaBVLw2gWR0C5G4xB7eEadX2UKGgGaAloD0MIr3rAPGReb0CUhpRSlGgVS7xoFkdAuRusFINEw3V9lChoBmgJaA9DCCWxpNx9X3FAlIaUUpRoFUvHaBZHQLkbtBcRlH11fZQoaAZoCWgPQwiJQPUP4uJxQJSGlFKUaBVL02gWR0C5G9ieRPoFdX2UKGgGaAloD0MIE4JV9bK7cUCUhpRSlGgVS65oFkdAuRvj+BH09XV9lChoBmgJaA9DCLAe963WRXJAlIaUUpRoFUvYaBZHQLkb5nQpnYh1fZQoaAZoCWgPQwi0VUlk3/RxQJSGlFKUaBVL3mgWR0C5G/TollbvdX2UKGgGaAloD0MIaM9lalJ+cECUhpRSlGgVS8JoFkdAuRwYOwxFiXV9lChoBmgJaA9DCGoX00x3BHFAlIaUUpRoFUvRaBZHQLkcLWjGkvd1fZQoaAZoCWgPQwi2oPfGUFVwQJSGlFKUaBVLz2gWR0C5HGJjH4oJdX2UKGgGaAloD0MIdjbkn1mvcECUhpRSlGgVS8BoFkdAuRxwskIHDHV9lChoBmgJaA9DCMsr19smVHFAlIaUUpRoFUveaBZHQLkceHGjsUt1fZQoaAZoCWgPQwhJ2SJp93hwQJSGlFKUaBVLw2gWR0C5HK/oJRfndX2UKGgGaAloD0MI/MIrSZ7HckCUhpRSlGgVS8doFkdAuRzY9QoCuHV9lChoBmgJaA9DCFis4SI3C3NAlIaUUpRoFUvsaBZHQLkc/vc8DCB1fZQoaAZoCWgPQwgnhXmPc5lyQJSGlFKUaBVLu2gWR0C5HQOndfsvdX2UKGgGaAloD0MIhssqbIbtbkCUhpRSlGgVS8BoFkdAuR0Uu+RHPXV9lChoBmgJaA9DCP3c0JTdvnJAlIaUUpRoFUvbaBZHQLkdHfj0cwR1fZQoaAZoCWgPQwi8I2O1udNyQJSGlFKUaBVL8GgWR0C5HS9Ba9sadX2UKGgGaAloD0MIYkhOJi75c0CUhpRSlGgVS8RoFkdAuR1CqYJE6XV9lChoBmgJaA9DCGQke4RaM3FAlIaUUpRoFUvPaBZHQLkdYn2qT8p1fZQoaAZoCWgPQwjYuz/eK0l0QJSGlFKUaBVL02gWR0C5HWv0dzXCdX2UKGgGaAloD0MI2h694X5Bc0CUhpRSlGgVS+doFkdAuR2egvlEJHV9lChoBmgJaA9DCJY9CWzOzG9AlIaUUpRoFUvVaBZHQLkdoqp97Wx1fZQoaAZoCWgPQwhy/FBpxJZBQJSGlFKUaBVLfGgWR0C5Hb0waisXdX2UKGgGaAloD0MIvLA1W/lAb0CUhpRSlGgVS8toFkdAuR3Zea8Yh3V9lChoBmgJaA9DCMxB0NGq6HBAlIaUUpRoFUvFaBZHQLkd5KPn0TV1fZQoaAZoCWgPQwhXYMjqFuBwQJSGlFKUaBVLzWgWR0C5HevAfuCxdX2UKGgGaAloD0MIBD3UtuGKckCUhpRSlGgVS/FoFkdAuR3t0xM363V9lChoBmgJaA9DCLA3MSSnDHJAlIaUUpRoFUvMaBZHQLkeI+RHPNV1fZQoaAZoCWgPQwhsPUM4prdwQJSGlFKUaBVLzWgWR0C5Hn3a8Hv+dX2UKGgGaAloD0MIkl7U7tczc0CUhpRSlGgVS81oFkdAuR6QYcebNXV9lChoBmgJaA9DCI7LuKlBAHFAlIaUUpRoFUvVaBZHQLkeqoy9EkV1fZQoaAZoCWgPQwg0g/jADp1vQJSGlFKUaBVL0GgWR0C5HrNTP0I1dX2UKGgGaAloD0MIlFD6QkisckCUhpRSlGgVS+hoFkdAuR71Frl/6XV9lChoBmgJaA9DCOCD1y6tGXJAlIaUUpRoFUvZaBZHQLke+fCyhSN1fZQoaAZoCWgPQwh6i4f3nH5xQJSGlFKUaBVNEwFoFkdAuR8BYnv2G3V9lChoBmgJaA9DCFjJx+4Cy3BAlIaUUpRoFUvaaBZHQLkfBkiD/VB1fZQoaAZoCWgPQwjNAu0OqXNvQJSGlFKUaBVLwGgWR0C5HwqgyuZDdX2UKGgGaAloD0MI8Q9benRdckCUhpRSlGgVS71oFkdAuR8gGY8dP3V9lChoBmgJaA9DCPxuumUH7XFAlIaUUpRoFUvfaBZHQLkfQW/8EV51fZQoaAZoCWgPQwh2jCsuDp1xQJSGlFKUaBVLvWgWR0C5H08My8BddX2UKGgGaAloD0MIrG9gcuNucUCUhpRSlGgVS8toFkdAuR9Uw+MZP3V9lChoBmgJaA9DCFzoSgQqCXBAlIaUUpRoFUvQaBZHQLkfaHj6vaF1fZQoaAZoCWgPQwjrkJvhxnhwQJSGlFKUaBVL0GgWR0C5H28H8jzJdX2UKGgGaAloD0MIsyPVd35lcUCUhpRSlGgVS+hoFkdAuR/VRpDeCXV9lChoBmgJaA9DCNUI/Uy9YXFAlIaUUpRoFUvGaBZHQLkf/PsAvL51fZQoaAZoCWgPQwiWJTrLLAxyQJSGlFKUaBVLvGgWR0C5IA2XTmW/dX2UKGgGaAloD0MILdFZZtH3cECUhpRSlGgVS+doFkdAuSAsizLOiXV9lChoBmgJaA9DCKUvhJw3RHJAlIaUUpRoFUveaBZHQLkgR4CZF5R1fZQoaAZoCWgPQwguxysQvR9xQJSGlFKUaBVLxmgWR0C5IGfeHi3odX2UKGgGaAloD0MI0Jm0qfoxcECUhpRSlGgVS7toFkdAuSBoCPp6hXV9lChoBmgJaA9DCOnzUUZcTXBAlIaUUpRoFUvAaBZHQLkgiZX+2mZ1fZQoaAZoCWgPQwjAB69dGipzQJSGlFKUaBVL2WgWR0C5IJabz9S/dX2UKGgGaAloD0MIxVT6CWcjcUCUhpRSlGgVS91oFkdAuSCie5Fw1nV9lChoBmgJaA9DCP64/fKJKXNAlIaUUpRoFUvoaBZHQLkgqtMPBi11fZQoaAZoCWgPQwhKz/QS4/FuQJSGlFKUaBVLwGgWR0C5IK5Nj9XLdX2UKGgGaAloD0MI0XZM3RU1bUCUhpRSlGgVS8NoFkdAuSC87bL2YnV9lChoBmgJaA9DCI9U3/nFJ3NAlIaUUpRoFUvFaBZHQLkg3Bj4Hop1fZQoaAZoCWgPQwhU46WbxPZyQJSGlFKUaBVL5GgWR0C5IPa/h2nsdX2UKGgGaAloD0MIqkVEMfnEcUCUhpRSlGgVS+NoFkdAuSEHPBzmwXV9lChoBmgJaA9DCKRQFr6+tnNAlIaUUpRoFUvMaBZHQLkhSukDZDl1fZQoaAZoCWgPQwhauReYFatwQJSGlFKUaBVLxGgWR0C5IWRufmLcdX2UKGgGaAloD0MIlnfVA6aecECUhpRSlGgVS8hoFkdAuSF6+HrQgXV9lChoBmgJaA9DCFn60AX14m5AlIaUUpRoFUvIaBZHQLkhmFBY3eh1fZQoaAZoCWgPQwhhqpm1VHByQJSGlFKUaBVL3mgWR0C5Idwuh9LIdX2UKGgGaAloD0MIvi7Df/rUcECUhpRSlGgVS9NoFkdAuSHjvqkdm3V9lChoBmgJaA9DCDXPEfnuDHNAlIaUUpRoFUvfaBZHQLkh+xLTQVt1fZQoaAZoCWgPQwiduByvQERvQJSGlFKUaBVLyGgWR0C5If8bBGhFdX2UKGgGaAloD0MIo1huafVgcUCUhpRSlGgVS95oFkdAuSIZm8M/hXV9lChoBmgJaA9DCOj0vBvLnnFAlIaUUpRoFUvFaBZHQLkiIIatLct1fZQoaAZoCWgPQwh/+s+a385xQJSGlFKUaBVL2mgWR0C5IjW74BV/dX2UKGgGaAloD0MIaCEBo0u9cUCUhpRSlGgVS69oFkdAuSI53wCr93V9lChoBmgJaA9DCGlRn+SOEnNAlIaUUpRoFUvjaBZHQLkiOoaUA1h1fZQoaAZoCWgPQwhOfotOFpRzQJSGlFKUaBVL+mgWR0C5ImxUFSsKdX2UKGgGaAloD0MInmD/dS7jcUCUhpRSlGgVS+doFkdAuSKCkRBeHHV9lChoBmgJaA9DCODaiZIQhnFAlIaUUpRoFUvhaBZHQLkipwMYuTR1fZQoaAZoCWgPQwhI/mDguXluQJSGlFKUaBVLymgWR0C5IsF5OafBdX2UKGgGaAloD0MIJ7wEp74rc0CUhpRSlGgVS9RoFkdAuSLrqKP4mHV9lChoBmgJaA9DCFSqRNkbWXBAlIaUUpRoFUvAaBZHQLki+gkC3gF1fZQoaAZoCWgPQwgExvoGJk5xQJSGlFKUaBVL6WgWR0C5Iyr2criEdX2UKGgGaAloD0MI0QZgA2JmcECUhpRSlGgVS7RoFkdAuSNGlabF0nV9lChoBmgJaA9DCCe9b3ztUW9AlIaUUpRoFUvCaBZHQLkjSr92ovV1fZQoaAZoCWgPQwjlRSbgl7twQJSGlFKUaBVLy2gWR0C5I1RxHXmOdX2UKGgGaAloD0MIpUqUvSXncECUhpRSlGgVS9JoFkdAuSOEBgeA/nV9lChoBmgJaA9DCNVeRNtx0XJAlIaUUpRoFUvJaBZHQLkjj7GvOhV1fZQoaAZoCWgPQwhREhJpG8ZxQJSGlFKUaBVLyWgWR0C5I5aHoHLSdX2UKGgGaAloD0MIyOpWz8ljc0CUhpRSlGgVS8xoFkdAuSO0w22oenV9lChoBmgJaA9DCPJetTJh9nJAlIaUUpRoFUvYaBZHQLkjxmf5DZ11fZQoaAZoCWgPQwgb1H5rJ8xwQJSGlFKUaBVL32gWR0C5I9eyzHCGdX2UKGgGaAloD0MI/DcvTvx2cUCUhpRSlGgVS89oFkdAuSPsWRA8jnV9lChoBmgJaA9DCJDdBUrKmXJAlIaUUpRoFUu/aBZHQLkkCKdhAnl1fZQoaAZoCWgPQwg7iQj/YjdxQJSGlFKUaBVL1mgWR0C5JA2Gyon8dX2UKGgGaAloD0MICrsoeuBTbkCUhpRSlGgVS79oFkdAuSQhC2MKkXV9lChoBmgJaA9DCOCAlq5gVXFAlIaUUpRoFUvCaBZHQLkkXq814xF1fZQoaAZoCWgPQwji5H6HIo1xQJSGlFKUaBVLy2gWR0C5JGHXNC7cdX2UKGgGaAloD0MIPIcyVAXdcUCUhpRSlGgVS8toFkdAuSSgIQe3hHV9lChoBmgJaA9DCOkKthHPinFAlIaUUpRoFUvJaBZHQLkkuQCCBf91fZQoaAZoCWgPQwgcYVER51ZxQJSGlFKUaBVLw2gWR0C5JLuGKyfMdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 372,
79
+ "n_steps": 2048,
80
+ "gamma": 0.995,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 6,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7528faceb51f7aab8b1c638c4365a3d84227298f8837d5a929588b0eabc7799
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f1742afaf9d7bf07161fa4618346b9139ed58be506d7c1ad5598997742140de
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8a045ae7e6945f5878353ce98ada3b63c75da34513fed003cfa05f43bc93976
3
+ size 194141
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 286.35920477380904, "std_reward": 12.707492647244553, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T16:09:04.816471"}