PPO LunarLander-v2
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 286.36 +/- 12.71
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4ce7601290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4ce7601320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4ce76013b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4ce7601440>", "_build": "<function ActorCriticPolicy._build at 0x7f4ce76014d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4ce7601560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4ce76015f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4ce7601680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4ce7601710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4ce76017a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4ce7601830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4ce76542a0>"}, "verbose": 3, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651676507.2078216, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2bP70fxZK7Zv1zPNYxab6Rv5W8JaGUPgAAgD8AAAAAJlumPbrdbD4Tqem9sIfRvh6Qu7wdVXe8AAAAAAAAAADmC789haqXu4WMZLsGyIs8ajrTvCa0bj0AAIA/AACAP5p2r73hYu85cruxMxoHFjJBa0i78KVcswAAgD8AAIA/AAa0vOH4nbovtcy6K3ewtWrgxrpNouw5AACAPwAAgD9mVYU88eNWPP3iuzyb64i+TdUxvOaIZb0AAAAAAAAAAOaGEj3qDrc/xqT2PhQcLD0qfAE7y3b6PQAAAAAAAAAAgLeBveUO+z5sYyO81VPCvkc5Db2TWsW8AAAAAAAAAABmY3o9FJKfuvU/fDkvc400WkkIOxpdkbgAAIA/AACAP7apVL4CXiA/jFW8O/+bE79d6+q+OjBnPQAAAAAAAAAAwCTAPSTxkT+LveM+pyYZvzj1Gj4wuJs+AAAAAAAAAADNkQI9coREPmP3cL3Sz5u+eD2svAaGYLsAAAAAAAAAADO8Dz4qsGA/epHGPWJ5G78FMB4+anSyvQAAAAAAAAAAWgkZPoeumT7w3ku+4lTdvuSZATzle6S7AAAAAAAAAAC62XU+itG2Pkvueb4zMN2+7uYlPlTaPL4AAAAAAAAAAJrEHb3aNLU/endCv9r9Lrz1Kdg84CslPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILo1feOXzcUCUhpRSlIwBbJRLv4wBdJRHQLkbd7wazeJ1fZQoaAZoCWgPQwhN1xNdV4FxQJSGlFKUaBVLw2gWR0C5G4xB7eEadX2UKGgGaAloD0MIr3rAPGReb0CUhpRSlGgVS7xoFkdAuRusFINEw3V9lChoBmgJaA9DCCWxpNx9X3FAlIaUUpRoFUvHaBZHQLkbtBcRlH11fZQoaAZoCWgPQwiJQPUP4uJxQJSGlFKUaBVL02gWR0C5G9ieRPoFdX2UKGgGaAloD0MIE4JV9bK7cUCUhpRSlGgVS65oFkdAuRvj+BH09XV9lChoBmgJaA9DCLAe963WRXJAlIaUUpRoFUvYaBZHQLkb5nQpnYh1fZQoaAZoCWgPQwi0VUlk3/RxQJSGlFKUaBVL3mgWR0C5G/TollbvdX2UKGgGaAloD0MIaM9lalJ+cECUhpRSlGgVS8JoFkdAuRwYOwxFiXV9lChoBmgJaA9DCGoX00x3BHFAlIaUUpRoFUvRaBZHQLkcLWjGkvd1fZQoaAZoCWgPQwi2oPfGUFVwQJSGlFKUaBVLz2gWR0C5HGJjH4oJdX2UKGgGaAloD0MIdjbkn1mvcECUhpRSlGgVS8BoFkdAuRxwskIHDHV9lChoBmgJaA9DCMsr19smVHFAlIaUUpRoFUveaBZHQLkceHGjsUt1fZQoaAZoCWgPQwhJ2SJp93hwQJSGlFKUaBVLw2gWR0C5HK/oJRfndX2UKGgGaAloD0MI/MIrSZ7HckCUhpRSlGgVS8doFkdAuRzY9QoCuHV9lChoBmgJaA9DCFis4SI3C3NAlIaUUpRoFUvsaBZHQLkc/vc8DCB1fZQoaAZoCWgPQwgnhXmPc5lyQJSGlFKUaBVLu2gWR0C5HQOndfsvdX2UKGgGaAloD0MIhssqbIbtbkCUhpRSlGgVS8BoFkdAuR0Uu+RHPXV9lChoBmgJaA9DCP3c0JTdvnJAlIaUUpRoFUvbaBZHQLkdHfj0cwR1fZQoaAZoCWgPQwi8I2O1udNyQJSGlFKUaBVL8GgWR0C5HS9Ba9sadX2UKGgGaAloD0MIYkhOJi75c0CUhpRSlGgVS8RoFkdAuR1CqYJE6XV9lChoBmgJaA9DCGQke4RaM3FAlIaUUpRoFUvPaBZHQLkdYn2qT8p1fZQoaAZoCWgPQwjYuz/eK0l0QJSGlFKUaBVL02gWR0C5HWv0dzXCdX2UKGgGaAloD0MI2h694X5Bc0CUhpRSlGgVS+doFkdAuR2egvlEJHV9lChoBmgJaA9DCJY9CWzOzG9AlIaUUpRoFUvVaBZHQLkdoqp97Wx1fZQoaAZoCWgPQwhy/FBpxJZBQJSGlFKUaBVLfGgWR0C5Hb0waisXdX2UKGgGaAloD0MIvLA1W/lAb0CUhpRSlGgVS8toFkdAuR3Zea8Yh3V9lChoBmgJaA9DCMxB0NGq6HBAlIaUUpRoFUvFaBZHQLkd5KPn0TV1fZQoaAZoCWgPQwhXYMjqFuBwQJSGlFKUaBVLzWgWR0C5HevAfuCxdX2UKGgGaAloD0MIBD3UtuGKckCUhpRSlGgVS/FoFkdAuR3t0xM363V9lChoBmgJaA9DCLA3MSSnDHJAlIaUUpRoFUvMaBZHQLkeI+RHPNV1fZQoaAZoCWgPQwhsPUM4prdwQJSGlFKUaBVLzWgWR0C5Hn3a8Hv+dX2UKGgGaAloD0MIkl7U7tczc0CUhpRSlGgVS81oFkdAuR6QYcebNXV9lChoBmgJaA9DCI7LuKlBAHFAlIaUUpRoFUvVaBZHQLkeqoy9EkV1fZQoaAZoCWgPQwg0g/jADp1vQJSGlFKUaBVL0GgWR0C5HrNTP0I1dX2UKGgGaAloD0MIlFD6QkisckCUhpRSlGgVS+hoFkdAuR71Frl/6XV9lChoBmgJaA9DCOCD1y6tGXJAlIaUUpRoFUvZaBZHQLke+fCyhSN1fZQoaAZoCWgPQwh6i4f3nH5xQJSGlFKUaBVNEwFoFkdAuR8BYnv2G3V9lChoBmgJaA9DCFjJx+4Cy3BAlIaUUpRoFUvaaBZHQLkfBkiD/VB1fZQoaAZoCWgPQwjNAu0OqXNvQJSGlFKUaBVLwGgWR0C5HwqgyuZDdX2UKGgGaAloD0MI8Q9benRdckCUhpRSlGgVS71oFkdAuR8gGY8dP3V9lChoBmgJaA9DCPxuumUH7XFAlIaUUpRoFUvfaBZHQLkfQW/8EV51fZQoaAZoCWgPQwh2jCsuDp1xQJSGlFKUaBVLvWgWR0C5H08My8BddX2UKGgGaAloD0MIrG9gcuNucUCUhpRSlGgVS8toFkdAuR9Uw+MZP3V9lChoBmgJaA9DCFzoSgQqCXBAlIaUUpRoFUvQaBZHQLkfaHj6vaF1fZQoaAZoCWgPQwjrkJvhxnhwQJSGlFKUaBVL0GgWR0C5H28H8jzJdX2UKGgGaAloD0MIsyPVd35lcUCUhpRSlGgVS+hoFkdAuR/VRpDeCXV9lChoBmgJaA9DCNUI/Uy9YXFAlIaUUpRoFUvGaBZHQLkf/PsAvL51fZQoaAZoCWgPQwiWJTrLLAxyQJSGlFKUaBVLvGgWR0C5IA2XTmW/dX2UKGgGaAloD0MILdFZZtH3cECUhpRSlGgVS+doFkdAuSAsizLOiXV9lChoBmgJaA9DCKUvhJw3RHJAlIaUUpRoFUveaBZHQLkgR4CZF5R1fZQoaAZoCWgPQwguxysQvR9xQJSGlFKUaBVLxmgWR0C5IGfeHi3odX2UKGgGaAloD0MI0Jm0qfoxcECUhpRSlGgVS7toFkdAuSBoCPp6hXV9lChoBmgJaA9DCOnzUUZcTXBAlIaUUpRoFUvAaBZHQLkgiZX+2mZ1fZQoaAZoCWgPQwjAB69dGipzQJSGlFKUaBVL2WgWR0C5IJabz9S/dX2UKGgGaAloD0MIxVT6CWcjcUCUhpRSlGgVS91oFkdAuSCie5Fw1nV9lChoBmgJaA9DCP64/fKJKXNAlIaUUpRoFUvoaBZHQLkgqtMPBi11fZQoaAZoCWgPQwhKz/QS4/FuQJSGlFKUaBVLwGgWR0C5IK5Nj9XLdX2UKGgGaAloD0MI0XZM3RU1bUCUhpRSlGgVS8NoFkdAuSC87bL2YnV9lChoBmgJaA9DCI9U3/nFJ3NAlIaUUpRoFUvFaBZHQLkg3Bj4Hop1fZQoaAZoCWgPQwhU46WbxPZyQJSGlFKUaBVL5GgWR0C5IPa/h2nsdX2UKGgGaAloD0MIqkVEMfnEcUCUhpRSlGgVS+NoFkdAuSEHPBzmwXV9lChoBmgJaA9DCKRQFr6+tnNAlIaUUpRoFUvMaBZHQLkhSukDZDl1fZQoaAZoCWgPQwhauReYFatwQJSGlFKUaBVLxGgWR0C5IWRufmLcdX2UKGgGaAloD0MIlnfVA6aecECUhpRSlGgVS8hoFkdAuSF6+HrQgXV9lChoBmgJaA9DCFn60AX14m5AlIaUUpRoFUvIaBZHQLkhmFBY3eh1fZQoaAZoCWgPQwhhqpm1VHByQJSGlFKUaBVL3mgWR0C5Idwuh9LIdX2UKGgGaAloD0MIvi7Df/rUcECUhpRSlGgVS9NoFkdAuSHjvqkdm3V9lChoBmgJaA9DCDXPEfnuDHNAlIaUUpRoFUvfaBZHQLkh+xLTQVt1fZQoaAZoCWgPQwiduByvQERvQJSGlFKUaBVLyGgWR0C5If8bBGhFdX2UKGgGaAloD0MIo1huafVgcUCUhpRSlGgVS95oFkdAuSIZm8M/hXV9lChoBmgJaA9DCOj0vBvLnnFAlIaUUpRoFUvFaBZHQLkiIIatLct1fZQoaAZoCWgPQwh/+s+a385xQJSGlFKUaBVL2mgWR0C5IjW74BV/dX2UKGgGaAloD0MIaCEBo0u9cUCUhpRSlGgVS69oFkdAuSI53wCr93V9lChoBmgJaA9DCGlRn+SOEnNAlIaUUpRoFUvjaBZHQLkiOoaUA1h1fZQoaAZoCWgPQwhOfotOFpRzQJSGlFKUaBVL+mgWR0C5ImxUFSsKdX2UKGgGaAloD0MInmD/dS7jcUCUhpRSlGgVS+doFkdAuSKCkRBeHHV9lChoBmgJaA9DCODaiZIQhnFAlIaUUpRoFUvhaBZHQLkipwMYuTR1fZQoaAZoCWgPQwhI/mDguXluQJSGlFKUaBVLymgWR0C5IsF5OafBdX2UKGgGaAloD0MIJ7wEp74rc0CUhpRSlGgVS9RoFkdAuSLrqKP4mHV9lChoBmgJaA9DCFSqRNkbWXBAlIaUUpRoFUvAaBZHQLki+gkC3gF1fZQoaAZoCWgPQwgExvoGJk5xQJSGlFKUaBVL6WgWR0C5Iyr2criEdX2UKGgGaAloD0MI0QZgA2JmcECUhpRSlGgVS7RoFkdAuSNGlabF0nV9lChoBmgJaA9DCCe9b3ztUW9AlIaUUpRoFUvCaBZHQLkjSr92ovV1fZQoaAZoCWgPQwjlRSbgl7twQJSGlFKUaBVLy2gWR0C5I1RxHXmOdX2UKGgGaAloD0MIpUqUvSXncECUhpRSlGgVS9JoFkdAuSOEBgeA/nV9lChoBmgJaA9DCNVeRNtx0XJAlIaUUpRoFUvJaBZHQLkjj7GvOhV1fZQoaAZoCWgPQwhREhJpG8ZxQJSGlFKUaBVLyWgWR0C5I5aHoHLSdX2UKGgGaAloD0MIyOpWz8ljc0CUhpRSlGgVS8xoFkdAuSO0w22oenV9lChoBmgJaA9DCPJetTJh9nJAlIaUUpRoFUvYaBZHQLkjxmf5DZ11fZQoaAZoCWgPQwgb1H5rJ8xwQJSGlFKUaBVL32gWR0C5I9eyzHCGdX2UKGgGaAloD0MI/DcvTvx2cUCUhpRSlGgVS89oFkdAuSPsWRA8jnV9lChoBmgJaA9DCJDdBUrKmXJAlIaUUpRoFUu/aBZHQLkkCKdhAnl1fZQoaAZoCWgPQwg7iQj/YjdxQJSGlFKUaBVL1mgWR0C5JA2Gyon8dX2UKGgGaAloD0MICrsoeuBTbkCUhpRSlGgVS79oFkdAuSQhC2MKkXV9lChoBmgJaA9DCOCAlq5gVXFAlIaUUpRoFUvCaBZHQLkkXq814xF1fZQoaAZoCWgPQwji5H6HIo1xQJSGlFKUaBVLy2gWR0C5JGHXNC7cdX2UKGgGaAloD0MIPIcyVAXdcUCUhpRSlGgVS8toFkdAuSSgIQe3hHV9lChoBmgJaA9DCOkKthHPinFAlIaUUpRoFUvJaBZHQLkkuQCCBf91fZQoaAZoCWgPQwgcYVER51ZxQJSGlFKUaBVLw2gWR0C5JLuGKyfMdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 2048, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb97c7d16562c7b87a0a0f3b8090c6109c953826ce22b0b09d64abc3632c932e
|
3 |
+
size 143982
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4ce7601290>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4ce7601320>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4ce76013b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4ce7601440>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4ce76014d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4ce7601560>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4ce76015f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4ce7601680>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4ce7601710>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4ce76017a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4ce7601830>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f4ce76542a0>"
|
20 |
+
},
|
21 |
+
"verbose": 3,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2031616,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651676507.2078216,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2bP70fxZK7Zv1zPNYxab6Rv5W8JaGUPgAAgD8AAAAAJlumPbrdbD4Tqem9sIfRvh6Qu7wdVXe8AAAAAAAAAADmC789haqXu4WMZLsGyIs8ajrTvCa0bj0AAIA/AACAP5p2r73hYu85cruxMxoHFjJBa0i78KVcswAAgD8AAIA/AAa0vOH4nbovtcy6K3ewtWrgxrpNouw5AACAPwAAgD9mVYU88eNWPP3iuzyb64i+TdUxvOaIZb0AAAAAAAAAAOaGEj3qDrc/xqT2PhQcLD0qfAE7y3b6PQAAAAAAAAAAgLeBveUO+z5sYyO81VPCvkc5Db2TWsW8AAAAAAAAAABmY3o9FJKfuvU/fDkvc400WkkIOxpdkbgAAIA/AACAP7apVL4CXiA/jFW8O/+bE79d6+q+OjBnPQAAAAAAAAAAwCTAPSTxkT+LveM+pyYZvzj1Gj4wuJs+AAAAAAAAAADNkQI9coREPmP3cL3Sz5u+eD2svAaGYLsAAAAAAAAAADO8Dz4qsGA/epHGPWJ5G78FMB4+anSyvQAAAAAAAAAAWgkZPoeumT7w3ku+4lTdvuSZATzle6S7AAAAAAAAAAC62XU+itG2Pkvueb4zMN2+7uYlPlTaPL4AAAAAAAAAAJrEHb3aNLU/endCv9r9Lrz1Kdg84CslPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILo1feOXzcUCUhpRSlIwBbJRLv4wBdJRHQLkbd7wazeJ1fZQoaAZoCWgPQwhN1xNdV4FxQJSGlFKUaBVLw2gWR0C5G4xB7eEadX2UKGgGaAloD0MIr3rAPGReb0CUhpRSlGgVS7xoFkdAuRusFINEw3V9lChoBmgJaA9DCCWxpNx9X3FAlIaUUpRoFUvHaBZHQLkbtBcRlH11fZQoaAZoCWgPQwiJQPUP4uJxQJSGlFKUaBVL02gWR0C5G9ieRPoFdX2UKGgGaAloD0MIE4JV9bK7cUCUhpRSlGgVS65oFkdAuRvj+BH09XV9lChoBmgJaA9DCLAe963WRXJAlIaUUpRoFUvYaBZHQLkb5nQpnYh1fZQoaAZoCWgPQwi0VUlk3/RxQJSGlFKUaBVL3mgWR0C5G/TollbvdX2UKGgGaAloD0MIaM9lalJ+cECUhpRSlGgVS8JoFkdAuRwYOwxFiXV9lChoBmgJaA9DCGoX00x3BHFAlIaUUpRoFUvRaBZHQLkcLWjGkvd1fZQoaAZoCWgPQwi2oPfGUFVwQJSGlFKUaBVLz2gWR0C5HGJjH4oJdX2UKGgGaAloD0MIdjbkn1mvcECUhpRSlGgVS8BoFkdAuRxwskIHDHV9lChoBmgJaA9DCMsr19smVHFAlIaUUpRoFUveaBZHQLkceHGjsUt1fZQoaAZoCWgPQwhJ2SJp93hwQJSGlFKUaBVLw2gWR0C5HK/oJRfndX2UKGgGaAloD0MI/MIrSZ7HckCUhpRSlGgVS8doFkdAuRzY9QoCuHV9lChoBmgJaA9DCFis4SI3C3NAlIaUUpRoFUvsaBZHQLkc/vc8DCB1fZQoaAZoCWgPQwgnhXmPc5lyQJSGlFKUaBVLu2gWR0C5HQOndfsvdX2UKGgGaAloD0MIhssqbIbtbkCUhpRSlGgVS8BoFkdAuR0Uu+RHPXV9lChoBmgJaA9DCP3c0JTdvnJAlIaUUpRoFUvbaBZHQLkdHfj0cwR1fZQoaAZoCWgPQwi8I2O1udNyQJSGlFKUaBVL8GgWR0C5HS9Ba9sadX2UKGgGaAloD0MIYkhOJi75c0CUhpRSlGgVS8RoFkdAuR1CqYJE6XV9lChoBmgJaA9DCGQke4RaM3FAlIaUUpRoFUvPaBZHQLkdYn2qT8p1fZQoaAZoCWgPQwjYuz/eK0l0QJSGlFKUaBVL02gWR0C5HWv0dzXCdX2UKGgGaAloD0MI2h694X5Bc0CUhpRSlGgVS+doFkdAuR2egvlEJHV9lChoBmgJaA9DCJY9CWzOzG9AlIaUUpRoFUvVaBZHQLkdoqp97Wx1fZQoaAZoCWgPQwhy/FBpxJZBQJSGlFKUaBVLfGgWR0C5Hb0waisXdX2UKGgGaAloD0MIvLA1W/lAb0CUhpRSlGgVS8toFkdAuR3Zea8Yh3V9lChoBmgJaA9DCMxB0NGq6HBAlIaUUpRoFUvFaBZHQLkd5KPn0TV1fZQoaAZoCWgPQwhXYMjqFuBwQJSGlFKUaBVLzWgWR0C5HevAfuCxdX2UKGgGaAloD0MIBD3UtuGKckCUhpRSlGgVS/FoFkdAuR3t0xM363V9lChoBmgJaA9DCLA3MSSnDHJAlIaUUpRoFUvMaBZHQLkeI+RHPNV1fZQoaAZoCWgPQwhsPUM4prdwQJSGlFKUaBVLzWgWR0C5Hn3a8Hv+dX2UKGgGaAloD0MIkl7U7tczc0CUhpRSlGgVS81oFkdAuR6QYcebNXV9lChoBmgJaA9DCI7LuKlBAHFAlIaUUpRoFUvVaBZHQLkeqoy9EkV1fZQoaAZoCWgPQwg0g/jADp1vQJSGlFKUaBVL0GgWR0C5HrNTP0I1dX2UKGgGaAloD0MIlFD6QkisckCUhpRSlGgVS+hoFkdAuR71Frl/6XV9lChoBmgJaA9DCOCD1y6tGXJAlIaUUpRoFUvZaBZHQLke+fCyhSN1fZQoaAZoCWgPQwh6i4f3nH5xQJSGlFKUaBVNEwFoFkdAuR8BYnv2G3V9lChoBmgJaA9DCFjJx+4Cy3BAlIaUUpRoFUvaaBZHQLkfBkiD/VB1fZQoaAZoCWgPQwjNAu0OqXNvQJSGlFKUaBVLwGgWR0C5HwqgyuZDdX2UKGgGaAloD0MI8Q9benRdckCUhpRSlGgVS71oFkdAuR8gGY8dP3V9lChoBmgJaA9DCPxuumUH7XFAlIaUUpRoFUvfaBZHQLkfQW/8EV51fZQoaAZoCWgPQwh2jCsuDp1xQJSGlFKUaBVLvWgWR0C5H08My8BddX2UKGgGaAloD0MIrG9gcuNucUCUhpRSlGgVS8toFkdAuR9Uw+MZP3V9lChoBmgJaA9DCFzoSgQqCXBAlIaUUpRoFUvQaBZHQLkfaHj6vaF1fZQoaAZoCWgPQwjrkJvhxnhwQJSGlFKUaBVL0GgWR0C5H28H8jzJdX2UKGgGaAloD0MIsyPVd35lcUCUhpRSlGgVS+hoFkdAuR/VRpDeCXV9lChoBmgJaA9DCNUI/Uy9YXFAlIaUUpRoFUvGaBZHQLkf/PsAvL51fZQoaAZoCWgPQwiWJTrLLAxyQJSGlFKUaBVLvGgWR0C5IA2XTmW/dX2UKGgGaAloD0MILdFZZtH3cECUhpRSlGgVS+doFkdAuSAsizLOiXV9lChoBmgJaA9DCKUvhJw3RHJAlIaUUpRoFUveaBZHQLkgR4CZF5R1fZQoaAZoCWgPQwguxysQvR9xQJSGlFKUaBVLxmgWR0C5IGfeHi3odX2UKGgGaAloD0MI0Jm0qfoxcECUhpRSlGgVS7toFkdAuSBoCPp6hXV9lChoBmgJaA9DCOnzUUZcTXBAlIaUUpRoFUvAaBZHQLkgiZX+2mZ1fZQoaAZoCWgPQwjAB69dGipzQJSGlFKUaBVL2WgWR0C5IJabz9S/dX2UKGgGaAloD0MIxVT6CWcjcUCUhpRSlGgVS91oFkdAuSCie5Fw1nV9lChoBmgJaA9DCP64/fKJKXNAlIaUUpRoFUvoaBZHQLkgqtMPBi11fZQoaAZoCWgPQwhKz/QS4/FuQJSGlFKUaBVLwGgWR0C5IK5Nj9XLdX2UKGgGaAloD0MI0XZM3RU1bUCUhpRSlGgVS8NoFkdAuSC87bL2YnV9lChoBmgJaA9DCI9U3/nFJ3NAlIaUUpRoFUvFaBZHQLkg3Bj4Hop1fZQoaAZoCWgPQwhU46WbxPZyQJSGlFKUaBVL5GgWR0C5IPa/h2nsdX2UKGgGaAloD0MIqkVEMfnEcUCUhpRSlGgVS+NoFkdAuSEHPBzmwXV9lChoBmgJaA9DCKRQFr6+tnNAlIaUUpRoFUvMaBZHQLkhSukDZDl1fZQoaAZoCWgPQwhauReYFatwQJSGlFKUaBVLxGgWR0C5IWRufmLcdX2UKGgGaAloD0MIlnfVA6aecECUhpRSlGgVS8hoFkdAuSF6+HrQgXV9lChoBmgJaA9DCFn60AX14m5AlIaUUpRoFUvIaBZHQLkhmFBY3eh1fZQoaAZoCWgPQwhhqpm1VHByQJSGlFKUaBVL3mgWR0C5Idwuh9LIdX2UKGgGaAloD0MIvi7Df/rUcECUhpRSlGgVS9NoFkdAuSHjvqkdm3V9lChoBmgJaA9DCDXPEfnuDHNAlIaUUpRoFUvfaBZHQLkh+xLTQVt1fZQoaAZoCWgPQwiduByvQERvQJSGlFKUaBVLyGgWR0C5If8bBGhFdX2UKGgGaAloD0MIo1huafVgcUCUhpRSlGgVS95oFkdAuSIZm8M/hXV9lChoBmgJaA9DCOj0vBvLnnFAlIaUUpRoFUvFaBZHQLkiIIatLct1fZQoaAZoCWgPQwh/+s+a385xQJSGlFKUaBVL2mgWR0C5IjW74BV/dX2UKGgGaAloD0MIaCEBo0u9cUCUhpRSlGgVS69oFkdAuSI53wCr93V9lChoBmgJaA9DCGlRn+SOEnNAlIaUUpRoFUvjaBZHQLkiOoaUA1h1fZQoaAZoCWgPQwhOfotOFpRzQJSGlFKUaBVL+mgWR0C5ImxUFSsKdX2UKGgGaAloD0MInmD/dS7jcUCUhpRSlGgVS+doFkdAuSKCkRBeHHV9lChoBmgJaA9DCODaiZIQhnFAlIaUUpRoFUvhaBZHQLkipwMYuTR1fZQoaAZoCWgPQwhI/mDguXluQJSGlFKUaBVLymgWR0C5IsF5OafBdX2UKGgGaAloD0MIJ7wEp74rc0CUhpRSlGgVS9RoFkdAuSLrqKP4mHV9lChoBmgJaA9DCFSqRNkbWXBAlIaUUpRoFUvAaBZHQLki+gkC3gF1fZQoaAZoCWgPQwgExvoGJk5xQJSGlFKUaBVL6WgWR0C5Iyr2criEdX2UKGgGaAloD0MI0QZgA2JmcECUhpRSlGgVS7RoFkdAuSNGlabF0nV9lChoBmgJaA9DCCe9b3ztUW9AlIaUUpRoFUvCaBZHQLkjSr92ovV1fZQoaAZoCWgPQwjlRSbgl7twQJSGlFKUaBVLy2gWR0C5I1RxHXmOdX2UKGgGaAloD0MIpUqUvSXncECUhpRSlGgVS9JoFkdAuSOEBgeA/nV9lChoBmgJaA9DCNVeRNtx0XJAlIaUUpRoFUvJaBZHQLkjj7GvOhV1fZQoaAZoCWgPQwhREhJpG8ZxQJSGlFKUaBVLyWgWR0C5I5aHoHLSdX2UKGgGaAloD0MIyOpWz8ljc0CUhpRSlGgVS8xoFkdAuSO0w22oenV9lChoBmgJaA9DCPJetTJh9nJAlIaUUpRoFUvYaBZHQLkjxmf5DZ11fZQoaAZoCWgPQwgb1H5rJ8xwQJSGlFKUaBVL32gWR0C5I9eyzHCGdX2UKGgGaAloD0MI/DcvTvx2cUCUhpRSlGgVS89oFkdAuSPsWRA8jnV9lChoBmgJaA9DCJDdBUrKmXJAlIaUUpRoFUu/aBZHQLkkCKdhAnl1fZQoaAZoCWgPQwg7iQj/YjdxQJSGlFKUaBVL1mgWR0C5JA2Gyon8dX2UKGgGaAloD0MICrsoeuBTbkCUhpRSlGgVS79oFkdAuSQhC2MKkXV9lChoBmgJaA9DCOCAlq5gVXFAlIaUUpRoFUvCaBZHQLkkXq814xF1fZQoaAZoCWgPQwji5H6HIo1xQJSGlFKUaBVLy2gWR0C5JGHXNC7cdX2UKGgGaAloD0MIPIcyVAXdcUCUhpRSlGgVS8toFkdAuSSgIQe3hHV9lChoBmgJaA9DCOkKthHPinFAlIaUUpRoFUvJaBZHQLkkuQCCBf91fZQoaAZoCWgPQwgcYVER51ZxQJSGlFKUaBVLw2gWR0C5JLuGKyfMdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 372,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.995,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 6,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7528faceb51f7aab8b1c638c4365a3d84227298f8837d5a929588b0eabc7799
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f1742afaf9d7bf07161fa4618346b9139ed58be506d7c1ad5598997742140de
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8a045ae7e6945f5878353ce98ada3b63c75da34513fed003cfa05f43bc93976
|
3 |
+
size 194141
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 286.35920477380904, "std_reward": 12.707492647244553, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T16:09:04.816471"}
|