File size: 1,503 Bytes
1b42869
ea131a4
 
 
60f04ff
ea131a4
 
 
 
60f04ff
 
ea131a4
 
 
1b42869
 
ea131a4
 
1b42869
60f04ff
1b42869
60f04ff
1b42869
 
800a48e
 
 
 
 
 
 
ea131a4
1b42869
e151f28
60f04ff
 
 
 
 
 
 
 
 
 
 
 
1b42869
ea131a4
1b42869
ea131a4
 
 
 
 
 
 
 
 
1b42869
ea131a4
1b42869
ea131a4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
language:
- km
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- automatic-speech-recognition
- openslr
- generated_from_trainer
datasets:
- openslr
model-index:
- name: training
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Wav2VecBert 2.0 Khmer

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the OpenSLR 42 dataset.


```python
from transformers import pipeline
recognizer = pipeline("automatic-speech-recognition", model="seanghay/w2v-bert-2.0-khmer", device="cuda")
text = recognizer("audio.mp3", chunk_length_s=10, stride_length_s=(4, 2))["text"]
```


## Training and evaluation data

25.79% WER (Eval with 10% of OpenSLR seed: 42)

```
{
  "epoch": 14.634146341463415,
  "eval_loss": 0.36365753412246704,
  "eval_runtime": 8.7546,
  "eval_samples_per_second": 33.24,
  "eval_steps_per_second": 4.226,
  "eval_wer": 0.2579008973858759,
  "step": 2400
}
```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Framework versions

- Transformers 4.42.4
- Pytorch 2.0.1
- Datasets 2.20.0
- Tokenizers 0.19.1