seanghay commited on
Commit
8cadda8
1 Parent(s): 6ffd81e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - kh_pos
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: khmer-pos-roberta-10
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: kh_pos
20
+ type: kh_pos
21
+ config: default
22
+ split: train
23
+ args: default
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.9511876225757245
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9526407682234832
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9519136408243376
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9735370853522176
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # khmer-pos-roberta-10
43
+
44
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the kh_pos dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.1063
47
+ - Precision: 0.9512
48
+ - Recall: 0.9526
49
+ - F1: 0.9519
50
+ - Accuracy: 0.9735
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 24
71
+ - eval_batch_size: 16
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 10
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 450 | 0.1347 | 0.9314 | 0.9333 | 0.9324 | 0.9603 |
82
+ | 0.4834 | 2.0 | 900 | 0.1183 | 0.9407 | 0.9377 | 0.9392 | 0.9653 |
83
+ | 0.1323 | 3.0 | 1350 | 0.1026 | 0.9484 | 0.9482 | 0.9483 | 0.9699 |
84
+ | 0.095 | 4.0 | 1800 | 0.0986 | 0.9502 | 0.9490 | 0.9496 | 0.9712 |
85
+ | 0.0774 | 5.0 | 2250 | 0.0978 | 0.9494 | 0.9491 | 0.9493 | 0.9712 |
86
+ | 0.0616 | 6.0 | 2700 | 0.0991 | 0.9493 | 0.9507 | 0.9500 | 0.9715 |
87
+ | 0.0494 | 7.0 | 3150 | 0.0989 | 0.9529 | 0.9540 | 0.9534 | 0.9731 |
88
+ | 0.0414 | 8.0 | 3600 | 0.1037 | 0.9499 | 0.9501 | 0.9500 | 0.9722 |
89
+ | 0.0339 | 9.0 | 4050 | 0.1056 | 0.9516 | 0.9517 | 0.9516 | 0.9734 |
90
+ | 0.029 | 10.0 | 4500 | 0.1063 | 0.9512 | 0.9526 | 0.9519 | 0.9735 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.30.2
96
+ - Pytorch 2.0.1+cu118
97
+ - Datasets 2.13.1
98
+ - Tokenizers 0.13.3