update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- kh_pos
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: khmer-pos-roberta-10
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: kh_pos
|
20 |
+
type: kh_pos
|
21 |
+
config: default
|
22 |
+
split: train
|
23 |
+
args: default
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.9511876225757245
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.9526407682234832
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.9519136408243376
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9735370853522176
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# khmer-pos-roberta-10
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the kh_pos dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.1063
|
47 |
+
- Precision: 0.9512
|
48 |
+
- Recall: 0.9526
|
49 |
+
- F1: 0.9519
|
50 |
+
- Accuracy: 0.9735
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 24
|
71 |
+
- eval_batch_size: 16
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 10
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 450 | 0.1347 | 0.9314 | 0.9333 | 0.9324 | 0.9603 |
|
82 |
+
| 0.4834 | 2.0 | 900 | 0.1183 | 0.9407 | 0.9377 | 0.9392 | 0.9653 |
|
83 |
+
| 0.1323 | 3.0 | 1350 | 0.1026 | 0.9484 | 0.9482 | 0.9483 | 0.9699 |
|
84 |
+
| 0.095 | 4.0 | 1800 | 0.0986 | 0.9502 | 0.9490 | 0.9496 | 0.9712 |
|
85 |
+
| 0.0774 | 5.0 | 2250 | 0.0978 | 0.9494 | 0.9491 | 0.9493 | 0.9712 |
|
86 |
+
| 0.0616 | 6.0 | 2700 | 0.0991 | 0.9493 | 0.9507 | 0.9500 | 0.9715 |
|
87 |
+
| 0.0494 | 7.0 | 3150 | 0.0989 | 0.9529 | 0.9540 | 0.9534 | 0.9731 |
|
88 |
+
| 0.0414 | 8.0 | 3600 | 0.1037 | 0.9499 | 0.9501 | 0.9500 | 0.9722 |
|
89 |
+
| 0.0339 | 9.0 | 4050 | 0.1056 | 0.9516 | 0.9517 | 0.9516 | 0.9734 |
|
90 |
+
| 0.029 | 10.0 | 4500 | 0.1063 | 0.9512 | 0.9526 | 0.9519 | 0.9735 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.30.2
|
96 |
+
- Pytorch 2.0.1+cu118
|
97 |
+
- Datasets 2.13.1
|
98 |
+
- Tokenizers 0.13.3
|