Upload folder using huggingface_hub (#1)
Browse files- 94a69350812fa2c2fbef7c8fd820f9a0348d8e2a6d0b483dd4186885cdda3408 (4a7a264b9652fb3a275dbb11aea58d49092ff515)
- 0df1aa9eff972065c5a2cf8983b3f64478abe9335cc77595b887b6c8ece0f4d3 (b73c5b6da54858d5b74a229381dff38467a122e1)
- 78266dfc09060c22e62406247a6bba3ab7263846cdab21d80d659412ccdb36d9 (e48aa9d1094fb0bc17a15e74e8eae69a7b93421f)
- da335db50e39095ae8b12f67e69f810d4cabb740000b9b32531803ed069685fc (75a36fc2bf3a8defe50a3b5d74815e449e214f37)
- 19f5c83e54b55315518855f924813b392287775e40a1c16fb2ca4785b4ce03ae (7f53b5de2ffeba8fd1f63803583022670ef2ec98)
- 3219698bbb5b24d33d80040c0c91466f545d9e58bf1160043a09d20e1a9d5425 (7f1a6a5f83b35b0f4b3701ba2bbacc85add07579)
- 3b22659f0d5875c3d88cee2986d9bbac8c0d8f05dc26e4bec965a047e11b73d1 (b706a8d33dbccdaaee3ce032d6b76f37c7fed623)
- 885532217124864cd7df0b8be58e44dfe6038eedcd8da47af5b25b78d4f59d0d (948f0471068cc8962b8e379a25ce58c3128606d4)
- 1bd719946ae051a80d2f746c79600354ae7daa6812101f233bcaff00adc0f505 (766a9fb7d74f3bba03eb0428a732821ada2a26d4)
- b60993a2d5f7079d77567d6a6cf43f9150cd175229837c029f419593363cb03d (75b28ff1395fa556ac1d62082e15c7fd25df7bfd)
- 12627dc949ac68fb2c3d108e88dc4cbf4668c3a3e7b500b39659b7b22d194b48 (4cd442fde8e7b4491ae2713c5b76232d4e3a9b00)
- 599c680d839a04b146a4328167d7e06553a280805ed6f41037a97c142132c788 (1565a9f2aa7391ba9d867449312805be6233426c)
- b078affa5dd52e942f76de40e78051252113d967fdc64d1260c16635979ec724 (681090e017c6f18fc83b38e36fa23657932d6c29)
- a5103d79e977ec72b88723d81c21f2bda14763a4a6381cb4a74af41f095f2b91 (c496bc9814170129cd0b05cf8d24856d30365608)
- caab55566fe4042703535a95ecc7c15bccb9c0279035866671b014b9183f101e (239d5665b78d2d4f062d5926f82a760a49507858)
- 2c8bbdee8b5c968bab8bbbc24898ac2f022de31d624f40f328e2cce793eb9af9 (cbb5ef71b043daefaacbeb5e7c77fce7838b2c05)
- ac43c0266f1a7756679a053f8656d9748a3adee147c3c63e816a9eb99812dd59 (b1200376aae12d4af9d5b2f906d9c9659132b8fb)
- 944d0da84bf10b491e5b5fa951c568bcdb3c6c9a6a3bdb2efea37a3a30e20d9c (5a7bfb836c63ceba8cf5bd83ff8820d5d781dcd3)
- cebd803d447d10a0ca1ee84661281b55f0a41a151a0d685378dcf77583128fed (77f8b43365401c0aea51464f886b13374d5b7c4e)
- fd915019c1fa99c35b085c752de2544a1bc25bc3389587996aed28913d9a8a1d (2391ad7b79f437bc4c540b22f48313cf6b486d99)
- a0fab88955b2663b883444eba788c074c26afc877166f624008e9f077dc3a3a9 (00896000d49f60b1afcdbcbf65d9165c87071d6e)
- 1a78ca80f7854188249f95d93cd58a98374a068bf450921670dc5d444bafce1c (56fe897ec3fc30f4796575f80c7e6bc5da080197)
- 3f72569b8fb5a039cbe5466e07dfb9758c16e0a564bb6c78bd334347c68fafc7 (8eecff83d936ebe1dfe93033bc79aac8649a5e1b)
- ba4c290db78971c676f24af9ffa1bd83de2fa36b0f687b45f5e977110a2850c4 (435114a62ebfd2a86307d4abf3707c94d2394305)
- 057290f30e448445cdd3ec502c01c7c7a5bd032a109ec0548cc3636739ffd9dc (c7b95d4730201e86529badd53a4dd78ca3c77149)
- 957389b3194de16afbd51c3c88c3beaefbe0185fb27ceb4f92d1968525c4ac59 (026e1e1c1fc21bce06cd7419ef01c1298f3da15f)
- 615689fd8bbe3f5414be011fd0c7180525d35bd5ab84a825896746c0f2d5ee74 (59f185e0d07de34008e93969bb8bb1173616f9c8)
- 8d522006fe030f3e2b929bac980a278bb4d1dc350dd2161678a2b46b782d4d6c (11699f48b875b26df34795cebc7d507b23fdb255)
- 67a28fa0ba271612ab9e05ee31fc2bdcc17540870368bda55231370ac5e75e73 (d4423020e4d684000d9580ef4dcf385594b36d4d)
- 4075ee7714907b9ed1b9f6fca31546bcaa962cfba9a9d2dbf2d3c1c88a930484 (5fe23fd917fe002ea02fff646c49f9476d72e5a3)
- LICENSE +117 -0
- README.md +396 -0
- config.json +28 -0
- generation_config.json +10 -0
- pytorch_model-00001-of-00030.bin +3 -0
- pytorch_model-00002-of-00030.bin +3 -0
- pytorch_model-00003-of-00030.bin +3 -0
- pytorch_model-00004-of-00030.bin +3 -0
- pytorch_model-00005-of-00030.bin +3 -0
- pytorch_model-00006-of-00030.bin +3 -0
- pytorch_model-00007-of-00030.bin +3 -0
- pytorch_model-00008-of-00030.bin +3 -0
- pytorch_model-00009-of-00030.bin +3 -0
- pytorch_model-00010-of-00030.bin +3 -0
- pytorch_model-00011-of-00030.bin +3 -0
- pytorch_model-00012-of-00030.bin +3 -0
- pytorch_model-00013-of-00030.bin +3 -0
- pytorch_model-00014-of-00030.bin +3 -0
- pytorch_model-00015-of-00030.bin +3 -0
- pytorch_model-00016-of-00030.bin +3 -0
- pytorch_model-00017-of-00030.bin +3 -0
- pytorch_model-00018-of-00030.bin +3 -0
- pytorch_model-00019-of-00030.bin +3 -0
- pytorch_model-00020-of-00030.bin +3 -0
- pytorch_model-00021-of-00030.bin +3 -0
- pytorch_model-00022-of-00030.bin +3 -0
- pytorch_model-00023-of-00030.bin +3 -0
- pytorch_model-00024-of-00030.bin +3 -0
- pytorch_model-00025-of-00030.bin +3 -0
- pytorch_model-00026-of-00030.bin +3 -0
- pytorch_model-00027-of-00030.bin +3 -0
- pytorch_model-00028-of-00030.bin +3 -0
- pytorch_model-00029-of-00030.bin +3 -0
- pytorch_model-00030-of-00030.bin +3 -0
- pytorch_model.bin.index.json +730 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2063 -0
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
META LLAMA 3 COMMUNITY LICENSE AGREEMENT
|
2 |
+
Meta Llama 3 Version Release Date: April 18, 2024
|
3 |
+
|
4 |
+
“Agreement” means the terms and conditions for use, reproduction, distribution and modification of the
|
5 |
+
Llama Materials set forth herein.
|
6 |
+
|
7 |
+
“Documentation” means the specifications, manuals and documentation accompanying Meta Llama 3
|
8 |
+
distributed by Meta at https://llama.meta.com/get-started/.
|
9 |
+
|
10 |
+
“Licensee” or “you” means you, or your employer or any other person or entity (if you are entering into
|
11 |
+
this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or
|
12 |
+
regulations to provide legal consent and that has legal authority to bind your employer or such other
|
13 |
+
person or entity if you are entering in this Agreement on their behalf.
|
14 |
+
|
15 |
+
“Meta Llama 3” means the foundational large language models and software and algorithms, including
|
16 |
+
machine-learning model code, trained model weights, inference-enabling code, training-enabling code,
|
17 |
+
fine-tuning enabling code and other elements of the foregoing distributed by Meta at
|
18 |
+
https://llama.meta.com/llama-downloads.
|
19 |
+
|
20 |
+
“Llama Materials” means, collectively, Meta’s proprietary Meta Llama 3 and Documentation (and any
|
21 |
+
portion thereof) made available under this Agreement.
|
22 |
+
|
23 |
+
“Meta” or “we” means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your
|
24 |
+
principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located
|
25 |
+
outside of the EEA or Switzerland).
|
26 |
+
|
27 |
+
By clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials,
|
28 |
+
you agree to be bound by this Agreement.
|
29 |
+
|
30 |
+
1. License Rights and Redistribution.
|
31 |
+
|
32 |
+
a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free
|
33 |
+
limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama
|
34 |
+
Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the
|
35 |
+
Llama Materials.
|
36 |
+
|
37 |
+
b. Redistribution and Use.
|
38 |
+
|
39 |
+
i. If you distribute or make available the Llama Materials (or any derivative works
|
40 |
+
thereof), or a product or service that uses any of them, including another AI model, you shall (A) provide
|
41 |
+
a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Meta
|
42 |
+
Llama 3” on a related website, user interface, blogpost, about page, or product documentation. If you
|
43 |
+
use the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is
|
44 |
+
distributed or made available, you shall also include “Llama 3” at the beginning of any such AI model
|
45 |
+
name.
|
46 |
+
|
47 |
+
ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part
|
48 |
+
of an integrated end user product, then Section 2 of this Agreement will not apply to you.
|
49 |
+
|
50 |
+
iii. You must retain in all copies of the Llama Materials that you distribute the following
|
51 |
+
attribution notice within a “Notice” text file distributed as a part of such copies: “Meta Llama 3 is
|
52 |
+
licensed under the Meta Llama 3 Community License, Copyright © Meta Platforms, Inc. All Rights
|
53 |
+
Reserved.”
|
54 |
+
|
55 |
+
iv. Your use of the Llama Materials must comply with applicable laws and regulations
|
56 |
+
(including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama
|
57 |
+
Materials (available at https://llama.meta.com/llama3/use-policy), which is hereby incorporated by
|
58 |
+
reference into this Agreement.
|
59 |
+
|
60 |
+
v. You will not use the Llama Materials or any output or results of the Llama Materials to
|
61 |
+
improve any other large language model (excluding Meta Llama 3 or derivative works thereof).
|
62 |
+
|
63 |
+
2. Additional Commercial Terms. If, on the Meta Llama 3 version release date, the monthly active users
|
64 |
+
of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700
|
65 |
+
million monthly active users in the preceding calendar month, you must request a license from Meta,
|
66 |
+
which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the
|
67 |
+
rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
|
68 |
+
|
69 |
+
3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY
|
70 |
+
OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF
|
71 |
+
ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED,
|
72 |
+
INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT,
|
73 |
+
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR
|
74 |
+
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND
|
75 |
+
ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND
|
76 |
+
RESULTS.
|
77 |
+
|
78 |
+
4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF
|
79 |
+
LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING
|
80 |
+
OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL,
|
81 |
+
INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
82 |
+
OF THE POSSIBILITY OF ANY OF THE FOREGOING.
|
83 |
+
|
84 |
+
5. Intellectual Property.
|
85 |
+
|
86 |
+
a. No trademark licenses are granted under this Agreement, and in connection with the Llama
|
87 |
+
Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other
|
88 |
+
or any of its affiliates, except as required for reasonable and customary use in describing and
|
89 |
+
redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to
|
90 |
+
use “Llama 3” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will
|
91 |
+
comply with Meta’s brand guidelines (currently accessible at
|
92 |
+
https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use
|
93 |
+
of the Mark will inure to the benefit of Meta.
|
94 |
+
|
95 |
+
b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with
|
96 |
+
respect to any derivative works and modifications of the Llama Materials that are made by you, as
|
97 |
+
between you and Meta, you are and will be the owner of such derivative works and modifications.
|
98 |
+
|
99 |
+
c. If you institute litigation or other proceedings against Meta or any entity (including a
|
100 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or
|
101 |
+
results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other
|
102 |
+
rights owned or licensable by you, then any licenses granted to you under this Agreement shall
|
103 |
+
terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold
|
104 |
+
harmless Meta from and against any claim by any third party arising out of or related to your use or
|
105 |
+
distribution of the Llama Materials.
|
106 |
+
|
107 |
+
6. Term and Termination. The term of this Agreement will commence upon your acceptance of this
|
108 |
+
Agreement or access to the Llama Materials and will continue in full force and effect until terminated in
|
109 |
+
accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in
|
110 |
+
breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete
|
111 |
+
and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this
|
112 |
+
Agreement.
|
113 |
+
|
114 |
+
7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of
|
115 |
+
the State of California without regard to choice of law principles, and the UN Convention on Contracts
|
116 |
+
for the International Sale of Goods does not apply to this Agreement. The courts of California shall have
|
117 |
+
exclusive jurisdiction of any dispute arising out of this Agreement.
|
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: meta-llama/Meta-Llama-3-70B-Instruct
|
3 |
+
tags:
|
4 |
+
- llama-3
|
5 |
+
- llama
|
6 |
+
- Mixtral
|
7 |
+
- instruct
|
8 |
+
- finetune
|
9 |
+
- chatml
|
10 |
+
- DPO
|
11 |
+
- RLHF
|
12 |
+
- gpt4
|
13 |
+
- distillation
|
14 |
+
- heathcare
|
15 |
+
- medical
|
16 |
+
- clinical
|
17 |
+
- med
|
18 |
+
- lifescience
|
19 |
+
- Pharmaceutical
|
20 |
+
- Pharma
|
21 |
+
model-index:
|
22 |
+
- name: OpenBioLLM-70B
|
23 |
+
results: []
|
24 |
+
license: llama3
|
25 |
+
language:
|
26 |
+
- en
|
27 |
+
widget:
|
28 |
+
- example_title: OpenBioLLM-70B
|
29 |
+
messages:
|
30 |
+
- role: system
|
31 |
+
content: >-
|
32 |
+
You are an expert and experienced from the healthcare and biomedical
|
33 |
+
domain with extensive medical knowledge and practical experience.
|
34 |
+
- role: user
|
35 |
+
content: How long does it take for newborn jaundice to go away?
|
36 |
+
output:
|
37 |
+
text: >-
|
38 |
+
Newborn jaundice, also known as neonatal jaundice, is a common condition
|
39 |
+
in newborns where the yellowing of the skin and eyes occurs due to an
|
40 |
+
elevated level of bilirubin in the blood. Bilirubin is a yellow pigment
|
41 |
+
that forms when red blood cells break down. In most cases, newborn
|
42 |
+
jaundice resolves on its own without any specific treatment.
|
43 |
+
|
44 |
+
The duration of newborn jaundice can vary depending on several factors
|
45 |
+
such as the underlying cause, gestational age at birth, and individual
|
46 |
+
variations in bilirubin metabolism. Here are some general guidelines:
|
47 |
+
|
48 |
+
1. Physiological jaundice: This is the most common type of newborn
|
49 |
+
jaundice and usually appears within 24-72 hours after birth. It tends to
|
50 |
+
peak between the second and fifth day of life and gradually improves over
|
51 |
+
the next week or two. By the time the baby is one week old, the jaundice
|
52 |
+
should have mostly resolved. 2. Breast milk jaundice: This type of
|
53 |
+
jaundice occurs in breastfed babies and may appear later than
|
54 |
+
physiological jaundice, typically between the fifth and fourteenth day of
|
55 |
+
life. It tends to persist for a longer duration but usually resolves
|
56 |
+
within six weeks after birth. 3. Pathological jaundice: This type of
|
57 |
+
jaundice is less common and occurs due to an underlying medical condition
|
58 |
+
that affects bilirubin metabolism or liver function. The duration of
|
59 |
+
pathological jaundice depends on the specific cause and may require
|
60 |
+
treatment.
|
61 |
+
|
62 |
+
It's important for parents to monitor their newborn's jaundice closely and
|
63 |
+
seek medical advice if the jaundice progresses rapidly, becomes severe, or
|
64 |
+
is accompanied by other symptoms such as poor feeding, lethargy, or
|
65 |
+
excessive sleepiness. In these cases, further evaluation and management
|
66 |
+
may be necessary. Remember that each baby is unique, and the timing of
|
67 |
+
jaundice resolution can vary. If you have concerns about your newborn's
|
68 |
+
jaundice, it's always best to consult with a healthcare professional for
|
69 |
+
personalized advice and guidance.
|
70 |
+
---
|
71 |
+
|
72 |
+
|
73 |
+
<div align="center">
|
74 |
+
<img width="260px" src="https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/BrQCb95lmEIFz79QAmoNA.png"></div>
|
75 |
+
|
76 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/fJIOPJnY6Ff6fUiSIuMEt.png)
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
<div align="center">
|
82 |
+
|
83 |
+
<h1>Advancing Open-source Large Language Models in Medical Domain</h1>
|
84 |
+
</div>
|
85 |
+
|
86 |
+
<p align="center" style="margin-top: 0px;">
|
87 |
+
<a href="https://colab.research.google.com/drive/1F5oV20InEYeAJGmBwYF9NM_QhLmjBkKJ?usp=sharing">
|
88 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="OpenChat Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 10px; margin-top: 0px; margin-bottom: 0px;"/>
|
89 |
+
<span class="link-text" style=" margin-right: 5px;">Online Demo</span>
|
90 |
+
</a> |
|
91 |
+
<a href="https://github.com/openlifescience-ai">
|
92 |
+
<img src="https://github.githubassets.com/assets/GitHub-Mark-ea2971cee799.png" alt="GitHub Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
|
93 |
+
<span class="link-text" style=" margin-right: 5px;">GitHub</span>
|
94 |
+
</a> |
|
95 |
+
<a href="#">
|
96 |
+
<img src="https://github.com/alpayariyak/openchat/blob/master/assets/arxiv-logomark-small-square-border.png?raw=true" alt="ArXiv Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
|
97 |
+
<span class="link-text" style="margin-right: 5px;">Paper</span>
|
98 |
+
</a> |
|
99 |
+
<a href="https://discord.gg/A5Fjf5zC69">
|
100 |
+
<img src="https://cloud.githubusercontent.com/assets/6291467/26705903/96c2d66e-477c-11e7-9f4e-f3c0efe96c9a.png" alt="Discord Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
|
101 |
+
<span class="link-text">Discord</span>
|
102 |
+
</a>
|
103 |
+
</p>
|
104 |
+
|
105 |
+
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/KGmRE5w2sepNtwsEu8t7K.jpeg)
|
106 |
+
|
107 |
+
Introducing OpenBioLLM-70B: A State-of-the-Art Open Source Biomedical Large Language Model
|
108 |
+
|
109 |
+
|
110 |
+
OpenBioLLM-70B is an advanced open source language model designed specifically for the biomedical domain. Developed by Saama AI Labs, this model leverages cutting-edge techniques to achieve state-of-the-art performance on a wide range of biomedical tasks.
|
111 |
+
|
112 |
+
🏥 **Biomedical Specialization**: OpenBioLLM-70B is tailored for the unique language and knowledge requirements of the medical and life sciences fields. It was fine-tuned on a vast corpus of high-quality biomedical data, enabling it to understand and generate text with domain-specific accuracy and fluency.
|
113 |
+
|
114 |
+
🎓 **Superior Performance**: With 70 billion parameters, OpenBioLLM-70B outperforms other open source biomedical language models of similar scale. It has also demonstrated better results compared to larger proprietary & open-source models like GPT-4, Gemini, Meditron-70B, Med-PaLM-1 & Med-PaLM-2 on biomedical benchmarks.
|
115 |
+
|
116 |
+
🧠 **Advanced Training Techniques**: OpenBioLLM-70B builds upon the powerful foundations of the **Meta-Llama-3-70B-Instruct** and [Meta-Llama-3-70B-Instruct](meta-llama/Meta-Llama-3-70B-Instruct) models. It incorporates the DPO dataset and fine-tuning recipe along with a custom diverse medical instruction dataset. Key components of the training pipeline include:
|
117 |
+
|
118 |
+
<div align="center">
|
119 |
+
<img width="1200px" src="https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/oPchsJsEpQoGcGXVbh7YS.png">
|
120 |
+
</div>
|
121 |
+
|
122 |
+
|
123 |
+
- **Policy Optimization**: [Direct Preference Optimization: Your Language Model is Secretly a Reward Model (DPO)](https://arxiv.org/abs/2305.18290)
|
124 |
+
- **Fine-tuning dataset**: Custom Medical Instruct dataset (We plan to release a sample training dataset in our upcoming paper; please stay updated)
|
125 |
+
|
126 |
+
This combination of cutting-edge techniques enables OpenBioLLM-70B to align with key capabilities and preferences for biomedical applications.
|
127 |
+
|
128 |
+
⚙️ **Release Details**:
|
129 |
+
|
130 |
+
- **Model Size**: 70 billion parameters
|
131 |
+
- **Quantization**: Optimized quantized versions available [Here](https://huggingface.co/aaditya/OpenBioLLM-70B-GGUF)
|
132 |
+
- **Language(s) (NLP):** en
|
133 |
+
- **Developed By**: [Ankit Pal (Aaditya Ura)](https://aadityaura.github.io/) from Saama AI Labs
|
134 |
+
- **License:** Meta-Llama License
|
135 |
+
- **Fine-tuned from models:** [Meta-Llama-3-70B-Instruct](meta-llama/Meta-Llama-3-70B-Instruct)
|
136 |
+
- **Resources for more information:**
|
137 |
+
- Paper: Coming soon
|
138 |
+
|
139 |
+
The model can be fine-tuned for more specialized tasks and datasets as needed.
|
140 |
+
|
141 |
+
OpenBioLLM-70B represents an important step forward in democratizing advanced language AI for the biomedical community. By leveraging state-of-the-art architectures and training techniques from leading open source efforts like Llama-3, we have created a powerful tool to accelerate innovation and discovery in healthcare and the life sciences.
|
142 |
+
|
143 |
+
We are excited to share OpenBioLLM-70B with researchers and developers around the world.
|
144 |
+
|
145 |
+
|
146 |
+
### Use with transformers
|
147 |
+
|
148 |
+
**Important: Please use the exact chat template provided by Llama-3 instruct version. Otherwise there will be a degradation in the performance. The model output can be verbose in rare cases. Please consider setting temperature = 0 to make this happen less.**
|
149 |
+
|
150 |
+
See the snippet below for usage with Transformers:
|
151 |
+
|
152 |
+
```python
|
153 |
+
import transformers
|
154 |
+
import torch
|
155 |
+
|
156 |
+
model_id = "aaditya/OpenBioLLM-Llama3-70B"
|
157 |
+
|
158 |
+
pipeline = transformers.pipeline(
|
159 |
+
"text-generation",
|
160 |
+
model=model_id,
|
161 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
162 |
+
device="auto",
|
163 |
+
)
|
164 |
+
|
165 |
+
messages = [
|
166 |
+
{"role": "system", "content": "You are an expert and experienced from the healthcare and biomedical domain with extensive medical knowledge and practical experience. Your name is OpenBioLLM, and you were developed by Saama AI Labs. who's willing to help answer the user's query with explanation. In your explanation, leverage your deep medical expertise such as relevant anatomical structures, physiological processes, diagnostic criteria, treatment guidelines, or other pertinent medical concepts. Use precise medical terminology while still aiming to make the explanation clear and accessible to a general audience."},
|
167 |
+
{"role": "user", "content": "How can i split a 3mg or 4mg waefin pill so i can get a 2.5mg pill?"},
|
168 |
+
]
|
169 |
+
|
170 |
+
prompt = pipeline.tokenizer.apply_chat_template(
|
171 |
+
messages,
|
172 |
+
tokenize=False,
|
173 |
+
add_generation_prompt=True
|
174 |
+
)
|
175 |
+
|
176 |
+
terminators = [
|
177 |
+
pipeline.tokenizer.eos_token_id,
|
178 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
179 |
+
]
|
180 |
+
|
181 |
+
outputs = pipeline(
|
182 |
+
prompt,
|
183 |
+
max_new_tokens=256,
|
184 |
+
eos_token_id=terminators,
|
185 |
+
do_sample=True,
|
186 |
+
temperature=0.0,
|
187 |
+
top_p=0.9,
|
188 |
+
)
|
189 |
+
print(outputs[0]["generated_text"][len(prompt):])
|
190 |
+
```
|
191 |
+
|
192 |
+
## **Training procedure**
|
193 |
+
|
194 |
+
### **Training hyperparameters**
|
195 |
+
|
196 |
+
<details>
|
197 |
+
<summary>Click to see details</summary>
|
198 |
+
|
199 |
+
- learning_rate: 0.0002
|
200 |
+
- lr_scheduler: cosine
|
201 |
+
- train_batch_size: 12
|
202 |
+
- eval_batch_size: 8
|
203 |
+
- GPU: H100 80GB SXM5
|
204 |
+
- num_devices: 8
|
205 |
+
- optimizer: adamw_bnb_8bit
|
206 |
+
- lr_scheduler_warmup_steps: 100
|
207 |
+
- num_epochs: 4
|
208 |
+
</details>
|
209 |
+
|
210 |
+
|
211 |
+
### **Peft hyperparameters**
|
212 |
+
|
213 |
+
<details>
|
214 |
+
<summary>Click to see details</summary>
|
215 |
+
|
216 |
+
- adapter: qlora
|
217 |
+
- lora_r: 128
|
218 |
+
- lora_alpha: 256
|
219 |
+
- lora_dropout: 0.05
|
220 |
+
- lora_target_linear: true
|
221 |
+
|
222 |
+
-lora_target_modules:
|
223 |
+
- q_proj
|
224 |
+
- v_proj
|
225 |
+
- k_proj
|
226 |
+
- o_proj
|
227 |
+
- gate_proj
|
228 |
+
- down_proj
|
229 |
+
- up_proj
|
230 |
+
</details>
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
### **Training results**
|
235 |
+
|
236 |
+
### **Framework versions**
|
237 |
+
|
238 |
+
- Transformers 4.39.3
|
239 |
+
- Pytorch 2.1.2+cu121
|
240 |
+
- Datasets 2.18.0
|
241 |
+
- Tokenizers 0.15.1
|
242 |
+
- Axolotl
|
243 |
+
- Lm harness for evaluation
|
244 |
+
|
245 |
+
|
246 |
+
# Benchmark Results
|
247 |
+
|
248 |
+
🔥 OpenBioLLM-70B demonstrates superior performance compared to larger models, such as GPT-4, Gemini, Meditron-70B, Med-PaLM-1 & Med-PaLM-2 across 9 diverse biomedical datasets, achieving state-of-the-art results with an average score of 86.06%, despite having a significantly smaller parameter count. The model's strong performance in domain-specific tasks, such as Clinical KG, Medical Genetics, and PubMedQA, highlights its ability to effectively capture and apply biomedical knowledge.
|
249 |
+
|
250 |
+
🚨 The GPT-4, Med-PaLM-1, and Med-PaLM-2 results are taken from their official papers. Since Med-PaLM doesn't provide zero-shot accuracy, we are using 5-shot accuracy from their paper for comparison. All results presented are in the zero-shot setting, except for Med-PaLM-2 and Med-PaLM-1, which use 5-shot accuracy.
|
251 |
+
|
252 |
+
| | Clinical KG | Medical Genetics | Anatomy | Pro Medicine | College Biology | College Medicine | MedQA 4 opts | PubMedQA | MedMCQA | Avg |
|
253 |
+
|--------------------|-------------|------------------|---------|--------------|-----------------|------------------|--------------|----------|---------|-------|
|
254 |
+
| **OpenBioLLM-70B** | **92.93** | **93.197** | **83.904** | 93.75 | 93.827 | **85.749** | 78.162 | 78.97 | **74.014** | **86.05588** |
|
255 |
+
| Med-PaLM-2 (5-shot) | 88.3 | 90 | 77.8 | **95.2** | 94.4 | 80.9 | **79.7** | **79.2** | 71.3 | 84.08 |
|
256 |
+
| **GPT-4** | 86.04 | 91 | 80 | 93.01 | **95.14** | 76.88 | 78.87 | 75.2 | 69.52 | 82.85 |
|
257 |
+
| Med-PaLM-1 (Flan-PaLM, 5-shot) | 80.4 | 75 | 63.7 | 83.8 | 88.9 | 76.3 | 67.6 | 79 | 57.6 | 74.7 |
|
258 |
+
| **OpenBioLLM-8B** | 76.101 | 86.1 | 69.829 | 78.21 | 84.213 | 68.042 | 58.993 | 74.12 | 56.913 | 72.502 |
|
259 |
+
| Gemini-1.0 | 76.7 | 75.8 | 66.7 | 77.7 | 88 | 69.2 | 58 | 70.7 | 54.3 | 70.79 |
|
260 |
+
| GPT-3.5 Turbo 1106 | 74.71 | 74 | 72.79 | 72.79 | 72.91 | 64.73 | 57.71 | 72.66 | 53.79 | 66 |
|
261 |
+
| Meditron-70B | 66.79 | 69 | 53.33 | 71.69 | 76.38 | 63 | 57.1 | 76.6 | 46.85 | 64.52 |
|
262 |
+
| gemma-7b | 69.81 | 70 | 59.26 | 66.18 | 79.86 | 60.12 | 47.21 | 76.2 | 48.96 | 64.18 |
|
263 |
+
| Mistral-7B-v0.1 | 68.68 | 71 | 55.56 | 68.38 | 68.06 | 59.54 | 50.82 | 75.4 | 48.2 | 62.85 |
|
264 |
+
| Apollo-7B | 62.26 | 72 | 61.48 | 69.12 | 70.83 | 55.49 | 55.22 | 39.8 | 53.77 | 60 |
|
265 |
+
| MedAlpaca-7b | 57.36 | 69 | 57.04 | 67.28 | 65.28 | 54.34 | 41.71 | 72.8 | 37.51 | 58.03 |
|
266 |
+
| BioMistral-7B | 59.9 | 64 | 56.5 | 60.4 | 59 | 54.7 | 50.6 | 77.5 | 48.1 | 57.3 |
|
267 |
+
| AlpaCare-llama2-7b | 49.81 | 49 | 45.92 | 33.82 | 50 | 43.35 | 29.77 | 72.2 | 34.42 | 45.36 |
|
268 |
+
| ClinicalGPT | 30.56 | 27 | 30.37 | 19.48 | 25 | 24.27 | 26.08 | 63.8 | 28.18 | 30.52 |
|
269 |
+
|
270 |
+
<div align="center">
|
271 |
+
<img width="1600px" src="https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/_SzdcJSBjZyo8RS1bTEkP.png">
|
272 |
+
</div>
|
273 |
+
|
274 |
+
## Detailed Medical Subjectwise accuracy
|
275 |
+
|
276 |
+
|
277 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/UXF-V0col0Z0sS6BGPBkE.png)
|
278 |
+
|
279 |
+
# Use Cases & Examples
|
280 |
+
|
281 |
+
🚨 **Below results are from the quantized version of OpenBioLLM-70B
|
282 |
+
|
283 |
+
|
284 |
+
# Summarize Clinical Notes
|
285 |
+
|
286 |
+
OpenBioLLM-70B can efficiently analyze and summarize complex clinical notes, EHR data, and discharge summaries, extracting key information and generating concise, structured summaries
|
287 |
+
|
288 |
+
|
289 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/xdwdBgOxNi_TfML0hKlI8.png)
|
290 |
+
|
291 |
+
# Answer Medical Questions
|
292 |
+
|
293 |
+
OpenBioLLM-70B can provide answers to a wide range of medical questions.
|
294 |
+
|
295 |
+
|
296 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/zO95GlwOQEZqCKQF69mE6.png)
|
297 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/OKBczKw7gWeW5xsuDpc27.png)
|
298 |
+
|
299 |
+
<details>
|
300 |
+
<summary>Click to see details</summary>
|
301 |
+
|
302 |
+
|
303 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/eJGHT5khppYvJb8fQ-YW4.png)
|
304 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/Cnbwrqa_-ORHRuNRC2P6Y.png)
|
305 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/J9DhdcvukAc9mnnW9fj2C.png)
|
306 |
+
|
307 |
+
</details>
|
308 |
+
|
309 |
+
# Clinical Entity Recognition
|
310 |
+
|
311 |
+
OpenBioLLM-70B can perform advanced clinical entity recognition by identifying and extracting key medical concepts, such as diseases, symptoms, medications, procedures, and anatomical structures, from unstructured clinical text. By leveraging its deep understanding of medical terminology and context, the model can accurately annotate and categorize clinical entities, enabling more efficient information retrieval, data analysis, and knowledge discovery from electronic health records, research articles, and other biomedical text sources. This capability can support various downstream applications, such as clinical decision support, pharmacovigilance, and medical research.
|
312 |
+
|
313 |
+
|
314 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/_69BW4k9LVABFwtxixL45.png)
|
315 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/DKy5wYCoPhoPPUc1-x8_J.png)
|
316 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/7WD9zCCBZT4-4XlfnIQjl.png)
|
317 |
+
|
318 |
+
# Biomarkers Extraction
|
319 |
+
|
320 |
+
|
321 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/ZttoM4AiteT7gFYVhjIpN.png)
|
322 |
+
|
323 |
+
|
324 |
+
# Classification
|
325 |
+
|
326 |
+
OpenBioLLM-70B can perform various biomedical classification tasks, such as disease prediction, sentiment analysis, medical document categorization
|
327 |
+
|
328 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/Bf5MW1d75qT-1F_TR_hC0.png)
|
329 |
+
|
330 |
+
# De-Identification
|
331 |
+
|
332 |
+
OpenBioLLM-70B can detect and remove personally identifiable information (PII) from medical records, ensuring patient privacy and compliance with data protection regulations like HIPAA.
|
333 |
+
|
334 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/hKX4kzm--Tw5bj6K78msy.png)
|
335 |
+
|
336 |
+
|
337 |
+
|
338 |
+
**Advisory Notice!**
|
339 |
+
|
340 |
+
While OpenBioLLM-70B leverages high-quality data sources, its outputs may still contain inaccuracies, biases, or misalignments that could pose risks if relied upon for medical decision-making without further testing and refinement. The model's performance has not yet been rigorously evaluated in randomized controlled trials or real-world healthcare environments.
|
341 |
+
|
342 |
+
Therefore, we strongly advise against using OpenBioLLM-70B for any direct patient care, clinical decision support, or other professional medical purposes at this time. Its use should be limited to research, development, and exploratory applications by qualified individuals who understand its limitations.
|
343 |
+
OpenBioLLM-70B is intended solely as a research tool to assist healthcare professionals and should never be considered a replacement for the professional judgment and expertise of a qualified medical doctor.
|
344 |
+
|
345 |
+
Appropriately adapting and validating OpenBioLLM-70B for specific medical use cases would require significant additional work, potentially including:
|
346 |
+
|
347 |
+
- Thorough testing and evaluation in relevant clinical scenarios
|
348 |
+
- Alignment with evidence-based guidelines and best practices
|
349 |
+
- Mitigation of potential biases and failure modes
|
350 |
+
- Integration with human oversight and interpretation
|
351 |
+
- Compliance with regulatory and ethical standards
|
352 |
+
|
353 |
+
Always consult a qualified healthcare provider for personal medical needs.
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
+
# Citation
|
358 |
+
|
359 |
+
If you find OpenBioLLM-70B & 8B useful in your work, please cite the model as follows:
|
360 |
+
|
361 |
+
```
|
362 |
+
@misc{OpenBioLLMs,
|
363 |
+
author = {Ankit Pal, Malaikannan Sankarasubbu},
|
364 |
+
title = {OpenBioLLMs: Advancing Open-Source Large Language Models for Healthcare and Life Sciences},
|
365 |
+
year = {2024},
|
366 |
+
publisher = {Hugging Face},
|
367 |
+
journal = {Hugging Face repository},
|
368 |
+
howpublished = {\url{https://huggingface.co/aaditya/OpenBioLLM-Llama3-70B}}
|
369 |
+
}
|
370 |
+
```
|
371 |
+
|
372 |
+
The accompanying paper is currently in progress and will be released soon.
|
373 |
+
|
374 |
+
<div align="center">
|
375 |
+
<h2> 💌 Contact </h2>
|
376 |
+
</div>
|
377 |
+
|
378 |
+
We look forward to hearing you and collaborating on this exciting project!
|
379 |
+
|
380 |
+
**Contributors:**
|
381 |
+
- [Ankit Pal (Aaditya Ura)](https://aadityaura.github.io/) [aadityaura at gmail dot com]
|
382 |
+
- Saama AI Labs
|
383 |
+
- Note: I am looking for a funded PhD opportunity, especially if it fits my Responsible Generative AI, Multimodal LLMs, Geometric Deep Learning, and Healthcare AI skillset.
|
384 |
+
|
385 |
+
|
386 |
+
# References
|
387 |
+
|
388 |
+
We thank the [Meta Team](meta-llama/Meta-Llama-3-70B-Instruct) for their amazing models!
|
389 |
+
|
390 |
+
|
391 |
+
Result sources
|
392 |
+
|
393 |
+
- [1] GPT-4 [Capabilities of GPT-4 on Medical Challenge Problems] (https://arxiv.org/abs/2303.13375)
|
394 |
+
- [2] Med-PaLM-1 [Large Language Models Encode Clinical Knowledge](https://arxiv.org/abs/2212.13138)
|
395 |
+
- [3] Med-PaLM-2 [Towards Expert-Level Medical Question Answering with Large Language Models](https://arxiv.org/abs/2305.09617)
|
396 |
+
- [4] Gemini-1.0 [Gemini Goes to Med School](https://arxiv.org/abs/2402.07023)
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "meta-llama/Meta-Llama-3-70B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 128000,
|
9 |
+
"eos_token_id": 128001,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 8192,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 28672,
|
14 |
+
"max_position_embeddings": 8192,
|
15 |
+
"model_type": "llama",
|
16 |
+
"num_attention_heads": 64,
|
17 |
+
"num_hidden_layers": 80,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"pretraining_tp": 1,
|
20 |
+
"rms_norm_eps": 1e-05,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rope_theta": 500000.0,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.40.0.dev0",
|
26 |
+
"use_cache": false,
|
27 |
+
"vocab_size": 128256
|
28 |
+
}
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 128000,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": [
|
6 |
+
128001,
|
7 |
+
128009
|
8 |
+
],
|
9 |
+
"transformers_version": "4.40.0.dev0"
|
10 |
+
}
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb478a6e3b584692cfdfa301a19d89da20144208a6ea3a1ce6e06b6c963fda45
|
3 |
+
size 4584412848
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c6df119ada92ab0a3c776b9d7616b130029c166a8017f152bc46dc64eb4eee2
|
3 |
+
size 4664173598
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d81c1f494f03d868aded8f5711ad6943239f1450e1c8f83d8d731bd8c8ed40e2
|
3 |
+
size 4999717966
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:989ad57c1293e11a7e6f2624a298a0e547b0ed4a101c26b6bf1f54acbcee8178
|
3 |
+
size 4966162946
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:192ce9f75c550f3c609260af9091aa4e371b6b53a5910bd90be51f4cc51e8ec1
|
3 |
+
size 4664140254
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fd43a4e1ba767864bbc0232e2757d58f6fcf469d6a8fcca01a293dee274b146
|
3 |
+
size 4664173662
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a54101789032f8c717a402cec8d50b227c92f6a7f96adf29292725172de5c902
|
3 |
+
size 4664173662
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e07902175fbc5c40701b91f4175f344f6438c0d299472aaf5b1308d9f33cbeb8
|
3 |
+
size 4999718030
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bf0b64349e0d5cb85faf3b2fb1abf445bf4085501201b9560dfbf4c542a1727
|
3 |
+
size 4966162946
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c466a67213707eef6b0bc94ef195c39d0bd603430afe60a1ccc175d636faecab
|
3 |
+
size 4664140254
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eaa4c3030bbbbd90d5719c180d2f6589b47c6d4a7a48befa6cefe667e317e4b0
|
3 |
+
size 4664173662
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9224cc7226ba9f857e6f7349e48698220c639e4b92680e1c32b360084022c0a
|
3 |
+
size 4664173662
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48125ebacec5f687f4a8819d781645a6b2a59bc0618828a2de8e5ee77616c87e
|
3 |
+
size 4999718030
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4eb8dc008d3989d03093482dfa3ce816174796a1ce88e913ee3213c3d8209041
|
3 |
+
size 4966162946
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dccab5b9d0971dd8c55efdaf956cd223aa74df35ca753548b1dceb77cf7fad98
|
3 |
+
size 4664140254
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e9d2e512020e08726dc812f722179f19288aaea9cb404d6d779dab3332d786a
|
3 |
+
size 4664173662
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41b83ab94302546bbf0b286fb57e8778ddf38c2052a514e8bc5ac9e0e613160d
|
3 |
+
size 4664173662
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7c0c6c81e959a1542890469ea2fb4c958d7f1d1c04198bfb995819fc6fdaccb
|
3 |
+
size 4999718030
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a24dd1b59e5e2e343f3885a7a385b6bce0fc97040ccc047d08ad800d3acc849
|
3 |
+
size 4966162946
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbaf0d23b5e9ad3632ef75da9b8ec72684e3369367ec148fdc17529aa1a0d99c
|
3 |
+
size 4664140254
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7efae59d8daf2cabf6bdf460380eb62d64878fc8834b84994b1dcf1df305e97
|
3 |
+
size 4664173662
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbc6efd364ed2aec97fe68aa91595dcafd418f29a2875e46996643ae838bb47c
|
3 |
+
size 4664173662
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:140f1a9441ebf55adebd1f649bd6fb0f62f20d9a4cae8094d0a88062730ab105
|
3 |
+
size 4999718030
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b25198f5ec222f1823ce93f69c805d99a4e6b1a5c940afe58a02588ed88720eb
|
3 |
+
size 4966162946
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5250e723af15e99ca3f142569dfb91a421782f7c0ee2d4484050d17a4c28500
|
3 |
+
size 4664140254
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:086784fc1e9dd3b80da2562777d0af43d9827919e791a6824d49d9fe656a58fb
|
3 |
+
size 4664173662
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fad0264d0755e5db970cbf83b37ef964af708d42f314ffe5d095b91a96116b5
|
3 |
+
size 4664173662
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17b79b94d867d0c70c90a632841a2c64b7e5cc4e59ee80c96af5667f9af8decb
|
3 |
+
size 4999718030
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47c076be77a70e17458f4dfa9d8f51f1a4001d0305a547abfedecb1d88ac3a74
|
3 |
+
size 4966179604
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d3e5e7ac799a39688899311c6a2c926dc6be33e2ef73bb38ddeff2a049b9057
|
3 |
+
size 2101347717
|
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 141107412992
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00030-of-00030.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00030.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00030.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00030.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00030.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00030.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00030.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00030.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00030.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00030.bin",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00030.bin",
|
17 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00002-of-00030.bin",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00002-of-00030.bin",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00030.bin",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00002-of-00030.bin",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00002-of-00030.bin",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00030.bin",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00030.bin",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00030.bin",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00030.bin",
|
26 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00005-of-00030.bin",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00005-of-00030.bin",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00005-of-00030.bin",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00005-of-00030.bin",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00005-of-00030.bin",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00005-of-00030.bin",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00005-of-00030.bin",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00005-of-00030.bin",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00005-of-00030.bin",
|
35 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00005-of-00030.bin",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00005-of-00030.bin",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00005-of-00030.bin",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00005-of-00030.bin",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00005-of-00030.bin",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00005-of-00030.bin",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00005-of-00030.bin",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00005-of-00030.bin",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00005-of-00030.bin",
|
44 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00006-of-00030.bin",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00006-of-00030.bin",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00005-of-00030.bin",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00005-of-00030.bin",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00006-of-00030.bin",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00005-of-00030.bin",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00005-of-00030.bin",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00005-of-00030.bin",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00005-of-00030.bin",
|
53 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00006-of-00030.bin",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00006-of-00030.bin",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00006-of-00030.bin",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00006-of-00030.bin",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00006-of-00030.bin",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00006-of-00030.bin",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00006-of-00030.bin",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00006-of-00030.bin",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00006-of-00030.bin",
|
62 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00006-of-00030.bin",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00006-of-00030.bin",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00006-of-00030.bin",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00006-of-00030.bin",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00006-of-00030.bin",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00006-of-00030.bin",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00006-of-00030.bin",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00006-of-00030.bin",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00006-of-00030.bin",
|
71 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00007-of-00030.bin",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00007-of-00030.bin",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00006-of-00030.bin",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00007-of-00030.bin",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00007-of-00030.bin",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00006-of-00030.bin",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00006-of-00030.bin",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00006-of-00030.bin",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00006-of-00030.bin",
|
80 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00007-of-00030.bin",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00007-of-00030.bin",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00007-of-00030.bin",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00007-of-00030.bin",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00007-of-00030.bin",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00007-of-00030.bin",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00007-of-00030.bin",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00007-of-00030.bin",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00007-of-00030.bin",
|
89 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00007-of-00030.bin",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00007-of-00030.bin",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00007-of-00030.bin",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00007-of-00030.bin",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00007-of-00030.bin",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00007-of-00030.bin",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00007-of-00030.bin",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00007-of-00030.bin",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00007-of-00030.bin",
|
98 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00008-of-00030.bin",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00008-of-00030.bin",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00008-of-00030.bin",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00008-of-00030.bin",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00008-of-00030.bin",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00007-of-00030.bin",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00007-of-00030.bin",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00007-of-00030.bin",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00007-of-00030.bin",
|
107 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00008-of-00030.bin",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00008-of-00030.bin",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00008-of-00030.bin",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00008-of-00030.bin",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00008-of-00030.bin",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00008-of-00030.bin",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00008-of-00030.bin",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00008-of-00030.bin",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00008-of-00030.bin",
|
116 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00002-of-00030.bin",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00002-of-00030.bin",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00002-of-00030.bin",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00002-of-00030.bin",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00002-of-00030.bin",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00002-of-00030.bin",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00002-of-00030.bin",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00002-of-00030.bin",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00002-of-00030.bin",
|
125 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00008-of-00030.bin",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00008-of-00030.bin",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00008-of-00030.bin",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00008-of-00030.bin",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00008-of-00030.bin",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00008-of-00030.bin",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00008-of-00030.bin",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00008-of-00030.bin",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00008-of-00030.bin",
|
134 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00009-of-00030.bin",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00009-of-00030.bin",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00009-of-00030.bin",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00009-of-00030.bin",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00009-of-00030.bin",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00008-of-00030.bin",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00009-of-00030.bin",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00008-of-00030.bin",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00008-of-00030.bin",
|
143 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00009-of-00030.bin",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00009-of-00030.bin",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00009-of-00030.bin",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00009-of-00030.bin",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00009-of-00030.bin",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00009-of-00030.bin",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00009-of-00030.bin",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00009-of-00030.bin",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00009-of-00030.bin",
|
152 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00009-of-00030.bin",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00009-of-00030.bin",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00009-of-00030.bin",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00009-of-00030.bin",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00009-of-00030.bin",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00009-of-00030.bin",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00009-of-00030.bin",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00009-of-00030.bin",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00009-of-00030.bin",
|
161 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00010-of-00030.bin",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00010-of-00030.bin",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00010-of-00030.bin",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00010-of-00030.bin",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00010-of-00030.bin",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00010-of-00030.bin",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00010-of-00030.bin",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00010-of-00030.bin",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00010-of-00030.bin",
|
170 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00010-of-00030.bin",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00010-of-00030.bin",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00010-of-00030.bin",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00010-of-00030.bin",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00010-of-00030.bin",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00010-of-00030.bin",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00010-of-00030.bin",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00010-of-00030.bin",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00010-of-00030.bin",
|
179 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00011-of-00030.bin",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00011-of-00030.bin",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00010-of-00030.bin",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00010-of-00030.bin",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00011-of-00030.bin",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00010-of-00030.bin",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00010-of-00030.bin",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00010-of-00030.bin",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00010-of-00030.bin",
|
188 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00011-of-00030.bin",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00011-of-00030.bin",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00011-of-00030.bin",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00011-of-00030.bin",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00011-of-00030.bin",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00011-of-00030.bin",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00011-of-00030.bin",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00011-of-00030.bin",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00011-of-00030.bin",
|
197 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00011-of-00030.bin",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00011-of-00030.bin",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00011-of-00030.bin",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00011-of-00030.bin",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00011-of-00030.bin",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00011-of-00030.bin",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00011-of-00030.bin",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00011-of-00030.bin",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00011-of-00030.bin",
|
206 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00012-of-00030.bin",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00012-of-00030.bin",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00011-of-00030.bin",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00012-of-00030.bin",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00012-of-00030.bin",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00011-of-00030.bin",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00011-of-00030.bin",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00011-of-00030.bin",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00011-of-00030.bin",
|
215 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00002-of-00030.bin",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00002-of-00030.bin",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00002-of-00030.bin",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00002-of-00030.bin",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00002-of-00030.bin",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00002-of-00030.bin",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00002-of-00030.bin",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00002-of-00030.bin",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00002-of-00030.bin",
|
224 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00012-of-00030.bin",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00012-of-00030.bin",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00012-of-00030.bin",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00012-of-00030.bin",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00012-of-00030.bin",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00012-of-00030.bin",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00012-of-00030.bin",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00012-of-00030.bin",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00012-of-00030.bin",
|
233 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00012-of-00030.bin",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00012-of-00030.bin",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00012-of-00030.bin",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00012-of-00030.bin",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00012-of-00030.bin",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00012-of-00030.bin",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00012-of-00030.bin",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00012-of-00030.bin",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00012-of-00030.bin",
|
242 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00013-of-00030.bin",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00013-of-00030.bin",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00013-of-00030.bin",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00013-of-00030.bin",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00013-of-00030.bin",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00012-of-00030.bin",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00012-of-00030.bin",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00012-of-00030.bin",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00012-of-00030.bin",
|
251 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00013-of-00030.bin",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00013-of-00030.bin",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00013-of-00030.bin",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00013-of-00030.bin",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00013-of-00030.bin",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00013-of-00030.bin",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00013-of-00030.bin",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00013-of-00030.bin",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00013-of-00030.bin",
|
260 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00013-of-00030.bin",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00013-of-00030.bin",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00013-of-00030.bin",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00013-of-00030.bin",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00013-of-00030.bin",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00013-of-00030.bin",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00013-of-00030.bin",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00013-of-00030.bin",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00013-of-00030.bin",
|
269 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00014-of-00030.bin",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00014-of-00030.bin",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00014-of-00030.bin",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00014-of-00030.bin",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00014-of-00030.bin",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00013-of-00030.bin",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00014-of-00030.bin",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00013-of-00030.bin",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00013-of-00030.bin",
|
278 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00014-of-00030.bin",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00014-of-00030.bin",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00014-of-00030.bin",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00014-of-00030.bin",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00014-of-00030.bin",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00014-of-00030.bin",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00014-of-00030.bin",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00014-of-00030.bin",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00014-of-00030.bin",
|
287 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00014-of-00030.bin",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00014-of-00030.bin",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00014-of-00030.bin",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00014-of-00030.bin",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00014-of-00030.bin",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00014-of-00030.bin",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00014-of-00030.bin",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00014-of-00030.bin",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00014-of-00030.bin",
|
296 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00015-of-00030.bin",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00015-of-00030.bin",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00015-of-00030.bin",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00015-of-00030.bin",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00015-of-00030.bin",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00015-of-00030.bin",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00015-of-00030.bin",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00015-of-00030.bin",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00015-of-00030.bin",
|
305 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00015-of-00030.bin",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00015-of-00030.bin",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00015-of-00030.bin",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00015-of-00030.bin",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00015-of-00030.bin",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00015-of-00030.bin",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00015-of-00030.bin",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00015-of-00030.bin",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00015-of-00030.bin",
|
314 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00003-of-00030.bin",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00003-of-00030.bin",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00003-of-00030.bin",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00003-of-00030.bin",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00003-of-00030.bin",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00002-of-00030.bin",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00002-of-00030.bin",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00002-of-00030.bin",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00002-of-00030.bin",
|
323 |
+
"model.layers.40.input_layernorm.weight": "pytorch_model-00016-of-00030.bin",
|
324 |
+
"model.layers.40.mlp.down_proj.weight": "pytorch_model-00016-of-00030.bin",
|
325 |
+
"model.layers.40.mlp.gate_proj.weight": "pytorch_model-00015-of-00030.bin",
|
326 |
+
"model.layers.40.mlp.up_proj.weight": "pytorch_model-00015-of-00030.bin",
|
327 |
+
"model.layers.40.post_attention_layernorm.weight": "pytorch_model-00016-of-00030.bin",
|
328 |
+
"model.layers.40.self_attn.k_proj.weight": "pytorch_model-00015-of-00030.bin",
|
329 |
+
"model.layers.40.self_attn.o_proj.weight": "pytorch_model-00015-of-00030.bin",
|
330 |
+
"model.layers.40.self_attn.q_proj.weight": "pytorch_model-00015-of-00030.bin",
|
331 |
+
"model.layers.40.self_attn.v_proj.weight": "pytorch_model-00015-of-00030.bin",
|
332 |
+
"model.layers.41.input_layernorm.weight": "pytorch_model-00016-of-00030.bin",
|
333 |
+
"model.layers.41.mlp.down_proj.weight": "pytorch_model-00016-of-00030.bin",
|
334 |
+
"model.layers.41.mlp.gate_proj.weight": "pytorch_model-00016-of-00030.bin",
|
335 |
+
"model.layers.41.mlp.up_proj.weight": "pytorch_model-00016-of-00030.bin",
|
336 |
+
"model.layers.41.post_attention_layernorm.weight": "pytorch_model-00016-of-00030.bin",
|
337 |
+
"model.layers.41.self_attn.k_proj.weight": "pytorch_model-00016-of-00030.bin",
|
338 |
+
"model.layers.41.self_attn.o_proj.weight": "pytorch_model-00016-of-00030.bin",
|
339 |
+
"model.layers.41.self_attn.q_proj.weight": "pytorch_model-00016-of-00030.bin",
|
340 |
+
"model.layers.41.self_attn.v_proj.weight": "pytorch_model-00016-of-00030.bin",
|
341 |
+
"model.layers.42.input_layernorm.weight": "pytorch_model-00016-of-00030.bin",
|
342 |
+
"model.layers.42.mlp.down_proj.weight": "pytorch_model-00016-of-00030.bin",
|
343 |
+
"model.layers.42.mlp.gate_proj.weight": "pytorch_model-00016-of-00030.bin",
|
344 |
+
"model.layers.42.mlp.up_proj.weight": "pytorch_model-00016-of-00030.bin",
|
345 |
+
"model.layers.42.post_attention_layernorm.weight": "pytorch_model-00016-of-00030.bin",
|
346 |
+
"model.layers.42.self_attn.k_proj.weight": "pytorch_model-00016-of-00030.bin",
|
347 |
+
"model.layers.42.self_attn.o_proj.weight": "pytorch_model-00016-of-00030.bin",
|
348 |
+
"model.layers.42.self_attn.q_proj.weight": "pytorch_model-00016-of-00030.bin",
|
349 |
+
"model.layers.42.self_attn.v_proj.weight": "pytorch_model-00016-of-00030.bin",
|
350 |
+
"model.layers.43.input_layernorm.weight": "pytorch_model-00017-of-00030.bin",
|
351 |
+
"model.layers.43.mlp.down_proj.weight": "pytorch_model-00017-of-00030.bin",
|
352 |
+
"model.layers.43.mlp.gate_proj.weight": "pytorch_model-00016-of-00030.bin",
|
353 |
+
"model.layers.43.mlp.up_proj.weight": "pytorch_model-00017-of-00030.bin",
|
354 |
+
"model.layers.43.post_attention_layernorm.weight": "pytorch_model-00017-of-00030.bin",
|
355 |
+
"model.layers.43.self_attn.k_proj.weight": "pytorch_model-00016-of-00030.bin",
|
356 |
+
"model.layers.43.self_attn.o_proj.weight": "pytorch_model-00016-of-00030.bin",
|
357 |
+
"model.layers.43.self_attn.q_proj.weight": "pytorch_model-00016-of-00030.bin",
|
358 |
+
"model.layers.43.self_attn.v_proj.weight": "pytorch_model-00016-of-00030.bin",
|
359 |
+
"model.layers.44.input_layernorm.weight": "pytorch_model-00017-of-00030.bin",
|
360 |
+
"model.layers.44.mlp.down_proj.weight": "pytorch_model-00017-of-00030.bin",
|
361 |
+
"model.layers.44.mlp.gate_proj.weight": "pytorch_model-00017-of-00030.bin",
|
362 |
+
"model.layers.44.mlp.up_proj.weight": "pytorch_model-00017-of-00030.bin",
|
363 |
+
"model.layers.44.post_attention_layernorm.weight": "pytorch_model-00017-of-00030.bin",
|
364 |
+
"model.layers.44.self_attn.k_proj.weight": "pytorch_model-00017-of-00030.bin",
|
365 |
+
"model.layers.44.self_attn.o_proj.weight": "pytorch_model-00017-of-00030.bin",
|
366 |
+
"model.layers.44.self_attn.q_proj.weight": "pytorch_model-00017-of-00030.bin",
|
367 |
+
"model.layers.44.self_attn.v_proj.weight": "pytorch_model-00017-of-00030.bin",
|
368 |
+
"model.layers.45.input_layernorm.weight": "pytorch_model-00017-of-00030.bin",
|
369 |
+
"model.layers.45.mlp.down_proj.weight": "pytorch_model-00017-of-00030.bin",
|
370 |
+
"model.layers.45.mlp.gate_proj.weight": "pytorch_model-00017-of-00030.bin",
|
371 |
+
"model.layers.45.mlp.up_proj.weight": "pytorch_model-00017-of-00030.bin",
|
372 |
+
"model.layers.45.post_attention_layernorm.weight": "pytorch_model-00017-of-00030.bin",
|
373 |
+
"model.layers.45.self_attn.k_proj.weight": "pytorch_model-00017-of-00030.bin",
|
374 |
+
"model.layers.45.self_attn.o_proj.weight": "pytorch_model-00017-of-00030.bin",
|
375 |
+
"model.layers.45.self_attn.q_proj.weight": "pytorch_model-00017-of-00030.bin",
|
376 |
+
"model.layers.45.self_attn.v_proj.weight": "pytorch_model-00017-of-00030.bin",
|
377 |
+
"model.layers.46.input_layernorm.weight": "pytorch_model-00018-of-00030.bin",
|
378 |
+
"model.layers.46.mlp.down_proj.weight": "pytorch_model-00018-of-00030.bin",
|
379 |
+
"model.layers.46.mlp.gate_proj.weight": "pytorch_model-00018-of-00030.bin",
|
380 |
+
"model.layers.46.mlp.up_proj.weight": "pytorch_model-00018-of-00030.bin",
|
381 |
+
"model.layers.46.post_attention_layernorm.weight": "pytorch_model-00018-of-00030.bin",
|
382 |
+
"model.layers.46.self_attn.k_proj.weight": "pytorch_model-00017-of-00030.bin",
|
383 |
+
"model.layers.46.self_attn.o_proj.weight": "pytorch_model-00017-of-00030.bin",
|
384 |
+
"model.layers.46.self_attn.q_proj.weight": "pytorch_model-00017-of-00030.bin",
|
385 |
+
"model.layers.46.self_attn.v_proj.weight": "pytorch_model-00017-of-00030.bin",
|
386 |
+
"model.layers.47.input_layernorm.weight": "pytorch_model-00018-of-00030.bin",
|
387 |
+
"model.layers.47.mlp.down_proj.weight": "pytorch_model-00018-of-00030.bin",
|
388 |
+
"model.layers.47.mlp.gate_proj.weight": "pytorch_model-00018-of-00030.bin",
|
389 |
+
"model.layers.47.mlp.up_proj.weight": "pytorch_model-00018-of-00030.bin",
|
390 |
+
"model.layers.47.post_attention_layernorm.weight": "pytorch_model-00018-of-00030.bin",
|
391 |
+
"model.layers.47.self_attn.k_proj.weight": "pytorch_model-00018-of-00030.bin",
|
392 |
+
"model.layers.47.self_attn.o_proj.weight": "pytorch_model-00018-of-00030.bin",
|
393 |
+
"model.layers.47.self_attn.q_proj.weight": "pytorch_model-00018-of-00030.bin",
|
394 |
+
"model.layers.47.self_attn.v_proj.weight": "pytorch_model-00018-of-00030.bin",
|
395 |
+
"model.layers.48.input_layernorm.weight": "pytorch_model-00018-of-00030.bin",
|
396 |
+
"model.layers.48.mlp.down_proj.weight": "pytorch_model-00018-of-00030.bin",
|
397 |
+
"model.layers.48.mlp.gate_proj.weight": "pytorch_model-00018-of-00030.bin",
|
398 |
+
"model.layers.48.mlp.up_proj.weight": "pytorch_model-00018-of-00030.bin",
|
399 |
+
"model.layers.48.post_attention_layernorm.weight": "pytorch_model-00018-of-00030.bin",
|
400 |
+
"model.layers.48.self_attn.k_proj.weight": "pytorch_model-00018-of-00030.bin",
|
401 |
+
"model.layers.48.self_attn.o_proj.weight": "pytorch_model-00018-of-00030.bin",
|
402 |
+
"model.layers.48.self_attn.q_proj.weight": "pytorch_model-00018-of-00030.bin",
|
403 |
+
"model.layers.48.self_attn.v_proj.weight": "pytorch_model-00018-of-00030.bin",
|
404 |
+
"model.layers.49.input_layernorm.weight": "pytorch_model-00019-of-00030.bin",
|
405 |
+
"model.layers.49.mlp.down_proj.weight": "pytorch_model-00019-of-00030.bin",
|
406 |
+
"model.layers.49.mlp.gate_proj.weight": "pytorch_model-00019-of-00030.bin",
|
407 |
+
"model.layers.49.mlp.up_proj.weight": "pytorch_model-00019-of-00030.bin",
|
408 |
+
"model.layers.49.post_attention_layernorm.weight": "pytorch_model-00019-of-00030.bin",
|
409 |
+
"model.layers.49.self_attn.k_proj.weight": "pytorch_model-00018-of-00030.bin",
|
410 |
+
"model.layers.49.self_attn.o_proj.weight": "pytorch_model-00019-of-00030.bin",
|
411 |
+
"model.layers.49.self_attn.q_proj.weight": "pytorch_model-00018-of-00030.bin",
|
412 |
+
"model.layers.49.self_attn.v_proj.weight": "pytorch_model-00018-of-00030.bin",
|
413 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00003-of-00030.bin",
|
414 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00003-of-00030.bin",
|
415 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00003-of-00030.bin",
|
416 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00003-of-00030.bin",
|
417 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00003-of-00030.bin",
|
418 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00003-of-00030.bin",
|
419 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00003-of-00030.bin",
|
420 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00003-of-00030.bin",
|
421 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00003-of-00030.bin",
|
422 |
+
"model.layers.50.input_layernorm.weight": "pytorch_model-00019-of-00030.bin",
|
423 |
+
"model.layers.50.mlp.down_proj.weight": "pytorch_model-00019-of-00030.bin",
|
424 |
+
"model.layers.50.mlp.gate_proj.weight": "pytorch_model-00019-of-00030.bin",
|
425 |
+
"model.layers.50.mlp.up_proj.weight": "pytorch_model-00019-of-00030.bin",
|
426 |
+
"model.layers.50.post_attention_layernorm.weight": "pytorch_model-00019-of-00030.bin",
|
427 |
+
"model.layers.50.self_attn.k_proj.weight": "pytorch_model-00019-of-00030.bin",
|
428 |
+
"model.layers.50.self_attn.o_proj.weight": "pytorch_model-00019-of-00030.bin",
|
429 |
+
"model.layers.50.self_attn.q_proj.weight": "pytorch_model-00019-of-00030.bin",
|
430 |
+
"model.layers.50.self_attn.v_proj.weight": "pytorch_model-00019-of-00030.bin",
|
431 |
+
"model.layers.51.input_layernorm.weight": "pytorch_model-00019-of-00030.bin",
|
432 |
+
"model.layers.51.mlp.down_proj.weight": "pytorch_model-00019-of-00030.bin",
|
433 |
+
"model.layers.51.mlp.gate_proj.weight": "pytorch_model-00019-of-00030.bin",
|
434 |
+
"model.layers.51.mlp.up_proj.weight": "pytorch_model-00019-of-00030.bin",
|
435 |
+
"model.layers.51.post_attention_layernorm.weight": "pytorch_model-00019-of-00030.bin",
|
436 |
+
"model.layers.51.self_attn.k_proj.weight": "pytorch_model-00019-of-00030.bin",
|
437 |
+
"model.layers.51.self_attn.o_proj.weight": "pytorch_model-00019-of-00030.bin",
|
438 |
+
"model.layers.51.self_attn.q_proj.weight": "pytorch_model-00019-of-00030.bin",
|
439 |
+
"model.layers.51.self_attn.v_proj.weight": "pytorch_model-00019-of-00030.bin",
|
440 |
+
"model.layers.52.input_layernorm.weight": "pytorch_model-00020-of-00030.bin",
|
441 |
+
"model.layers.52.mlp.down_proj.weight": "pytorch_model-00020-of-00030.bin",
|
442 |
+
"model.layers.52.mlp.gate_proj.weight": "pytorch_model-00020-of-00030.bin",
|
443 |
+
"model.layers.52.mlp.up_proj.weight": "pytorch_model-00020-of-00030.bin",
|
444 |
+
"model.layers.52.post_attention_layernorm.weight": "pytorch_model-00020-of-00030.bin",
|
445 |
+
"model.layers.52.self_attn.k_proj.weight": "pytorch_model-00020-of-00030.bin",
|
446 |
+
"model.layers.52.self_attn.o_proj.weight": "pytorch_model-00020-of-00030.bin",
|
447 |
+
"model.layers.52.self_attn.q_proj.weight": "pytorch_model-00020-of-00030.bin",
|
448 |
+
"model.layers.52.self_attn.v_proj.weight": "pytorch_model-00020-of-00030.bin",
|
449 |
+
"model.layers.53.input_layernorm.weight": "pytorch_model-00020-of-00030.bin",
|
450 |
+
"model.layers.53.mlp.down_proj.weight": "pytorch_model-00020-of-00030.bin",
|
451 |
+
"model.layers.53.mlp.gate_proj.weight": "pytorch_model-00020-of-00030.bin",
|
452 |
+
"model.layers.53.mlp.up_proj.weight": "pytorch_model-00020-of-00030.bin",
|
453 |
+
"model.layers.53.post_attention_layernorm.weight": "pytorch_model-00020-of-00030.bin",
|
454 |
+
"model.layers.53.self_attn.k_proj.weight": "pytorch_model-00020-of-00030.bin",
|
455 |
+
"model.layers.53.self_attn.o_proj.weight": "pytorch_model-00020-of-00030.bin",
|
456 |
+
"model.layers.53.self_attn.q_proj.weight": "pytorch_model-00020-of-00030.bin",
|
457 |
+
"model.layers.53.self_attn.v_proj.weight": "pytorch_model-00020-of-00030.bin",
|
458 |
+
"model.layers.54.input_layernorm.weight": "pytorch_model-00021-of-00030.bin",
|
459 |
+
"model.layers.54.mlp.down_proj.weight": "pytorch_model-00021-of-00030.bin",
|
460 |
+
"model.layers.54.mlp.gate_proj.weight": "pytorch_model-00020-of-00030.bin",
|
461 |
+
"model.layers.54.mlp.up_proj.weight": "pytorch_model-00020-of-00030.bin",
|
462 |
+
"model.layers.54.post_attention_layernorm.weight": "pytorch_model-00021-of-00030.bin",
|
463 |
+
"model.layers.54.self_attn.k_proj.weight": "pytorch_model-00020-of-00030.bin",
|
464 |
+
"model.layers.54.self_attn.o_proj.weight": "pytorch_model-00020-of-00030.bin",
|
465 |
+
"model.layers.54.self_attn.q_proj.weight": "pytorch_model-00020-of-00030.bin",
|
466 |
+
"model.layers.54.self_attn.v_proj.weight": "pytorch_model-00020-of-00030.bin",
|
467 |
+
"model.layers.55.input_layernorm.weight": "pytorch_model-00021-of-00030.bin",
|
468 |
+
"model.layers.55.mlp.down_proj.weight": "pytorch_model-00021-of-00030.bin",
|
469 |
+
"model.layers.55.mlp.gate_proj.weight": "pytorch_model-00021-of-00030.bin",
|
470 |
+
"model.layers.55.mlp.up_proj.weight": "pytorch_model-00021-of-00030.bin",
|
471 |
+
"model.layers.55.post_attention_layernorm.weight": "pytorch_model-00021-of-00030.bin",
|
472 |
+
"model.layers.55.self_attn.k_proj.weight": "pytorch_model-00021-of-00030.bin",
|
473 |
+
"model.layers.55.self_attn.o_proj.weight": "pytorch_model-00021-of-00030.bin",
|
474 |
+
"model.layers.55.self_attn.q_proj.weight": "pytorch_model-00021-of-00030.bin",
|
475 |
+
"model.layers.55.self_attn.v_proj.weight": "pytorch_model-00021-of-00030.bin",
|
476 |
+
"model.layers.56.input_layernorm.weight": "pytorch_model-00021-of-00030.bin",
|
477 |
+
"model.layers.56.mlp.down_proj.weight": "pytorch_model-00021-of-00030.bin",
|
478 |
+
"model.layers.56.mlp.gate_proj.weight": "pytorch_model-00021-of-00030.bin",
|
479 |
+
"model.layers.56.mlp.up_proj.weight": "pytorch_model-00021-of-00030.bin",
|
480 |
+
"model.layers.56.post_attention_layernorm.weight": "pytorch_model-00021-of-00030.bin",
|
481 |
+
"model.layers.56.self_attn.k_proj.weight": "pytorch_model-00021-of-00030.bin",
|
482 |
+
"model.layers.56.self_attn.o_proj.weight": "pytorch_model-00021-of-00030.bin",
|
483 |
+
"model.layers.56.self_attn.q_proj.weight": "pytorch_model-00021-of-00030.bin",
|
484 |
+
"model.layers.56.self_attn.v_proj.weight": "pytorch_model-00021-of-00030.bin",
|
485 |
+
"model.layers.57.input_layernorm.weight": "pytorch_model-00022-of-00030.bin",
|
486 |
+
"model.layers.57.mlp.down_proj.weight": "pytorch_model-00022-of-00030.bin",
|
487 |
+
"model.layers.57.mlp.gate_proj.weight": "pytorch_model-00021-of-00030.bin",
|
488 |
+
"model.layers.57.mlp.up_proj.weight": "pytorch_model-00022-of-00030.bin",
|
489 |
+
"model.layers.57.post_attention_layernorm.weight": "pytorch_model-00022-of-00030.bin",
|
490 |
+
"model.layers.57.self_attn.k_proj.weight": "pytorch_model-00021-of-00030.bin",
|
491 |
+
"model.layers.57.self_attn.o_proj.weight": "pytorch_model-00021-of-00030.bin",
|
492 |
+
"model.layers.57.self_attn.q_proj.weight": "pytorch_model-00021-of-00030.bin",
|
493 |
+
"model.layers.57.self_attn.v_proj.weight": "pytorch_model-00021-of-00030.bin",
|
494 |
+
"model.layers.58.input_layernorm.weight": "pytorch_model-00022-of-00030.bin",
|
495 |
+
"model.layers.58.mlp.down_proj.weight": "pytorch_model-00022-of-00030.bin",
|
496 |
+
"model.layers.58.mlp.gate_proj.weight": "pytorch_model-00022-of-00030.bin",
|
497 |
+
"model.layers.58.mlp.up_proj.weight": "pytorch_model-00022-of-00030.bin",
|
498 |
+
"model.layers.58.post_attention_layernorm.weight": "pytorch_model-00022-of-00030.bin",
|
499 |
+
"model.layers.58.self_attn.k_proj.weight": "pytorch_model-00022-of-00030.bin",
|
500 |
+
"model.layers.58.self_attn.o_proj.weight": "pytorch_model-00022-of-00030.bin",
|
501 |
+
"model.layers.58.self_attn.q_proj.weight": "pytorch_model-00022-of-00030.bin",
|
502 |
+
"model.layers.58.self_attn.v_proj.weight": "pytorch_model-00022-of-00030.bin",
|
503 |
+
"model.layers.59.input_layernorm.weight": "pytorch_model-00022-of-00030.bin",
|
504 |
+
"model.layers.59.mlp.down_proj.weight": "pytorch_model-00022-of-00030.bin",
|
505 |
+
"model.layers.59.mlp.gate_proj.weight": "pytorch_model-00022-of-00030.bin",
|
506 |
+
"model.layers.59.mlp.up_proj.weight": "pytorch_model-00022-of-00030.bin",
|
507 |
+
"model.layers.59.post_attention_layernorm.weight": "pytorch_model-00022-of-00030.bin",
|
508 |
+
"model.layers.59.self_attn.k_proj.weight": "pytorch_model-00022-of-00030.bin",
|
509 |
+
"model.layers.59.self_attn.o_proj.weight": "pytorch_model-00022-of-00030.bin",
|
510 |
+
"model.layers.59.self_attn.q_proj.weight": "pytorch_model-00022-of-00030.bin",
|
511 |
+
"model.layers.59.self_attn.v_proj.weight": "pytorch_model-00022-of-00030.bin",
|
512 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00003-of-00030.bin",
|
513 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00003-of-00030.bin",
|
514 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00003-of-00030.bin",
|
515 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00003-of-00030.bin",
|
516 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00003-of-00030.bin",
|
517 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00003-of-00030.bin",
|
518 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00003-of-00030.bin",
|
519 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00003-of-00030.bin",
|
520 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00003-of-00030.bin",
|
521 |
+
"model.layers.60.input_layernorm.weight": "pytorch_model-00023-of-00030.bin",
|
522 |
+
"model.layers.60.mlp.down_proj.weight": "pytorch_model-00023-of-00030.bin",
|
523 |
+
"model.layers.60.mlp.gate_proj.weight": "pytorch_model-00023-of-00030.bin",
|
524 |
+
"model.layers.60.mlp.up_proj.weight": "pytorch_model-00023-of-00030.bin",
|
525 |
+
"model.layers.60.post_attention_layernorm.weight": "pytorch_model-00023-of-00030.bin",
|
526 |
+
"model.layers.60.self_attn.k_proj.weight": "pytorch_model-00022-of-00030.bin",
|
527 |
+
"model.layers.60.self_attn.o_proj.weight": "pytorch_model-00022-of-00030.bin",
|
528 |
+
"model.layers.60.self_attn.q_proj.weight": "pytorch_model-00022-of-00030.bin",
|
529 |
+
"model.layers.60.self_attn.v_proj.weight": "pytorch_model-00022-of-00030.bin",
|
530 |
+
"model.layers.61.input_layernorm.weight": "pytorch_model-00023-of-00030.bin",
|
531 |
+
"model.layers.61.mlp.down_proj.weight": "pytorch_model-00023-of-00030.bin",
|
532 |
+
"model.layers.61.mlp.gate_proj.weight": "pytorch_model-00023-of-00030.bin",
|
533 |
+
"model.layers.61.mlp.up_proj.weight": "pytorch_model-00023-of-00030.bin",
|
534 |
+
"model.layers.61.post_attention_layernorm.weight": "pytorch_model-00023-of-00030.bin",
|
535 |
+
"model.layers.61.self_attn.k_proj.weight": "pytorch_model-00023-of-00030.bin",
|
536 |
+
"model.layers.61.self_attn.o_proj.weight": "pytorch_model-00023-of-00030.bin",
|
537 |
+
"model.layers.61.self_attn.q_proj.weight": "pytorch_model-00023-of-00030.bin",
|
538 |
+
"model.layers.61.self_attn.v_proj.weight": "pytorch_model-00023-of-00030.bin",
|
539 |
+
"model.layers.62.input_layernorm.weight": "pytorch_model-00023-of-00030.bin",
|
540 |
+
"model.layers.62.mlp.down_proj.weight": "pytorch_model-00023-of-00030.bin",
|
541 |
+
"model.layers.62.mlp.gate_proj.weight": "pytorch_model-00023-of-00030.bin",
|
542 |
+
"model.layers.62.mlp.up_proj.weight": "pytorch_model-00023-of-00030.bin",
|
543 |
+
"model.layers.62.post_attention_layernorm.weight": "pytorch_model-00023-of-00030.bin",
|
544 |
+
"model.layers.62.self_attn.k_proj.weight": "pytorch_model-00023-of-00030.bin",
|
545 |
+
"model.layers.62.self_attn.o_proj.weight": "pytorch_model-00023-of-00030.bin",
|
546 |
+
"model.layers.62.self_attn.q_proj.weight": "pytorch_model-00023-of-00030.bin",
|
547 |
+
"model.layers.62.self_attn.v_proj.weight": "pytorch_model-00023-of-00030.bin",
|
548 |
+
"model.layers.63.input_layernorm.weight": "pytorch_model-00024-of-00030.bin",
|
549 |
+
"model.layers.63.mlp.down_proj.weight": "pytorch_model-00024-of-00030.bin",
|
550 |
+
"model.layers.63.mlp.gate_proj.weight": "pytorch_model-00024-of-00030.bin",
|
551 |
+
"model.layers.63.mlp.up_proj.weight": "pytorch_model-00024-of-00030.bin",
|
552 |
+
"model.layers.63.post_attention_layernorm.weight": "pytorch_model-00024-of-00030.bin",
|
553 |
+
"model.layers.63.self_attn.k_proj.weight": "pytorch_model-00023-of-00030.bin",
|
554 |
+
"model.layers.63.self_attn.o_proj.weight": "pytorch_model-00024-of-00030.bin",
|
555 |
+
"model.layers.63.self_attn.q_proj.weight": "pytorch_model-00023-of-00030.bin",
|
556 |
+
"model.layers.63.self_attn.v_proj.weight": "pytorch_model-00023-of-00030.bin",
|
557 |
+
"model.layers.64.input_layernorm.weight": "pytorch_model-00024-of-00030.bin",
|
558 |
+
"model.layers.64.mlp.down_proj.weight": "pytorch_model-00024-of-00030.bin",
|
559 |
+
"model.layers.64.mlp.gate_proj.weight": "pytorch_model-00024-of-00030.bin",
|
560 |
+
"model.layers.64.mlp.up_proj.weight": "pytorch_model-00024-of-00030.bin",
|
561 |
+
"model.layers.64.post_attention_layernorm.weight": "pytorch_model-00024-of-00030.bin",
|
562 |
+
"model.layers.64.self_attn.k_proj.weight": "pytorch_model-00024-of-00030.bin",
|
563 |
+
"model.layers.64.self_attn.o_proj.weight": "pytorch_model-00024-of-00030.bin",
|
564 |
+
"model.layers.64.self_attn.q_proj.weight": "pytorch_model-00024-of-00030.bin",
|
565 |
+
"model.layers.64.self_attn.v_proj.weight": "pytorch_model-00024-of-00030.bin",
|
566 |
+
"model.layers.65.input_layernorm.weight": "pytorch_model-00024-of-00030.bin",
|
567 |
+
"model.layers.65.mlp.down_proj.weight": "pytorch_model-00024-of-00030.bin",
|
568 |
+
"model.layers.65.mlp.gate_proj.weight": "pytorch_model-00024-of-00030.bin",
|
569 |
+
"model.layers.65.mlp.up_proj.weight": "pytorch_model-00024-of-00030.bin",
|
570 |
+
"model.layers.65.post_attention_layernorm.weight": "pytorch_model-00024-of-00030.bin",
|
571 |
+
"model.layers.65.self_attn.k_proj.weight": "pytorch_model-00024-of-00030.bin",
|
572 |
+
"model.layers.65.self_attn.o_proj.weight": "pytorch_model-00024-of-00030.bin",
|
573 |
+
"model.layers.65.self_attn.q_proj.weight": "pytorch_model-00024-of-00030.bin",
|
574 |
+
"model.layers.65.self_attn.v_proj.weight": "pytorch_model-00024-of-00030.bin",
|
575 |
+
"model.layers.66.input_layernorm.weight": "pytorch_model-00025-of-00030.bin",
|
576 |
+
"model.layers.66.mlp.down_proj.weight": "pytorch_model-00025-of-00030.bin",
|
577 |
+
"model.layers.66.mlp.gate_proj.weight": "pytorch_model-00025-of-00030.bin",
|
578 |
+
"model.layers.66.mlp.up_proj.weight": "pytorch_model-00025-of-00030.bin",
|
579 |
+
"model.layers.66.post_attention_layernorm.weight": "pytorch_model-00025-of-00030.bin",
|
580 |
+
"model.layers.66.self_attn.k_proj.weight": "pytorch_model-00025-of-00030.bin",
|
581 |
+
"model.layers.66.self_attn.o_proj.weight": "pytorch_model-00025-of-00030.bin",
|
582 |
+
"model.layers.66.self_attn.q_proj.weight": "pytorch_model-00025-of-00030.bin",
|
583 |
+
"model.layers.66.self_attn.v_proj.weight": "pytorch_model-00025-of-00030.bin",
|
584 |
+
"model.layers.67.input_layernorm.weight": "pytorch_model-00025-of-00030.bin",
|
585 |
+
"model.layers.67.mlp.down_proj.weight": "pytorch_model-00025-of-00030.bin",
|
586 |
+
"model.layers.67.mlp.gate_proj.weight": "pytorch_model-00025-of-00030.bin",
|
587 |
+
"model.layers.67.mlp.up_proj.weight": "pytorch_model-00025-of-00030.bin",
|
588 |
+
"model.layers.67.post_attention_layernorm.weight": "pytorch_model-00025-of-00030.bin",
|
589 |
+
"model.layers.67.self_attn.k_proj.weight": "pytorch_model-00025-of-00030.bin",
|
590 |
+
"model.layers.67.self_attn.o_proj.weight": "pytorch_model-00025-of-00030.bin",
|
591 |
+
"model.layers.67.self_attn.q_proj.weight": "pytorch_model-00025-of-00030.bin",
|
592 |
+
"model.layers.67.self_attn.v_proj.weight": "pytorch_model-00025-of-00030.bin",
|
593 |
+
"model.layers.68.input_layernorm.weight": "pytorch_model-00026-of-00030.bin",
|
594 |
+
"model.layers.68.mlp.down_proj.weight": "pytorch_model-00026-of-00030.bin",
|
595 |
+
"model.layers.68.mlp.gate_proj.weight": "pytorch_model-00025-of-00030.bin",
|
596 |
+
"model.layers.68.mlp.up_proj.weight": "pytorch_model-00025-of-00030.bin",
|
597 |
+
"model.layers.68.post_attention_layernorm.weight": "pytorch_model-00026-of-00030.bin",
|
598 |
+
"model.layers.68.self_attn.k_proj.weight": "pytorch_model-00025-of-00030.bin",
|
599 |
+
"model.layers.68.self_attn.o_proj.weight": "pytorch_model-00025-of-00030.bin",
|
600 |
+
"model.layers.68.self_attn.q_proj.weight": "pytorch_model-00025-of-00030.bin",
|
601 |
+
"model.layers.68.self_attn.v_proj.weight": "pytorch_model-00025-of-00030.bin",
|
602 |
+
"model.layers.69.input_layernorm.weight": "pytorch_model-00026-of-00030.bin",
|
603 |
+
"model.layers.69.mlp.down_proj.weight": "pytorch_model-00026-of-00030.bin",
|
604 |
+
"model.layers.69.mlp.gate_proj.weight": "pytorch_model-00026-of-00030.bin",
|
605 |
+
"model.layers.69.mlp.up_proj.weight": "pytorch_model-00026-of-00030.bin",
|
606 |
+
"model.layers.69.post_attention_layernorm.weight": "pytorch_model-00026-of-00030.bin",
|
607 |
+
"model.layers.69.self_attn.k_proj.weight": "pytorch_model-00026-of-00030.bin",
|
608 |
+
"model.layers.69.self_attn.o_proj.weight": "pytorch_model-00026-of-00030.bin",
|
609 |
+
"model.layers.69.self_attn.q_proj.weight": "pytorch_model-00026-of-00030.bin",
|
610 |
+
"model.layers.69.self_attn.v_proj.weight": "pytorch_model-00026-of-00030.bin",
|
611 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00004-of-00030.bin",
|
612 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00004-of-00030.bin",
|
613 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00004-of-00030.bin",
|
614 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00004-of-00030.bin",
|
615 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00004-of-00030.bin",
|
616 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00003-of-00030.bin",
|
617 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00004-of-00030.bin",
|
618 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00003-of-00030.bin",
|
619 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00003-of-00030.bin",
|
620 |
+
"model.layers.70.input_layernorm.weight": "pytorch_model-00026-of-00030.bin",
|
621 |
+
"model.layers.70.mlp.down_proj.weight": "pytorch_model-00026-of-00030.bin",
|
622 |
+
"model.layers.70.mlp.gate_proj.weight": "pytorch_model-00026-of-00030.bin",
|
623 |
+
"model.layers.70.mlp.up_proj.weight": "pytorch_model-00026-of-00030.bin",
|
624 |
+
"model.layers.70.post_attention_layernorm.weight": "pytorch_model-00026-of-00030.bin",
|
625 |
+
"model.layers.70.self_attn.k_proj.weight": "pytorch_model-00026-of-00030.bin",
|
626 |
+
"model.layers.70.self_attn.o_proj.weight": "pytorch_model-00026-of-00030.bin",
|
627 |
+
"model.layers.70.self_attn.q_proj.weight": "pytorch_model-00026-of-00030.bin",
|
628 |
+
"model.layers.70.self_attn.v_proj.weight": "pytorch_model-00026-of-00030.bin",
|
629 |
+
"model.layers.71.input_layernorm.weight": "pytorch_model-00027-of-00030.bin",
|
630 |
+
"model.layers.71.mlp.down_proj.weight": "pytorch_model-00027-of-00030.bin",
|
631 |
+
"model.layers.71.mlp.gate_proj.weight": "pytorch_model-00026-of-00030.bin",
|
632 |
+
"model.layers.71.mlp.up_proj.weight": "pytorch_model-00027-of-00030.bin",
|
633 |
+
"model.layers.71.post_attention_layernorm.weight": "pytorch_model-00027-of-00030.bin",
|
634 |
+
"model.layers.71.self_attn.k_proj.weight": "pytorch_model-00026-of-00030.bin",
|
635 |
+
"model.layers.71.self_attn.o_proj.weight": "pytorch_model-00026-of-00030.bin",
|
636 |
+
"model.layers.71.self_attn.q_proj.weight": "pytorch_model-00026-of-00030.bin",
|
637 |
+
"model.layers.71.self_attn.v_proj.weight": "pytorch_model-00026-of-00030.bin",
|
638 |
+
"model.layers.72.input_layernorm.weight": "pytorch_model-00027-of-00030.bin",
|
639 |
+
"model.layers.72.mlp.down_proj.weight": "pytorch_model-00027-of-00030.bin",
|
640 |
+
"model.layers.72.mlp.gate_proj.weight": "pytorch_model-00027-of-00030.bin",
|
641 |
+
"model.layers.72.mlp.up_proj.weight": "pytorch_model-00027-of-00030.bin",
|
642 |
+
"model.layers.72.post_attention_layernorm.weight": "pytorch_model-00027-of-00030.bin",
|
643 |
+
"model.layers.72.self_attn.k_proj.weight": "pytorch_model-00027-of-00030.bin",
|
644 |
+
"model.layers.72.self_attn.o_proj.weight": "pytorch_model-00027-of-00030.bin",
|
645 |
+
"model.layers.72.self_attn.q_proj.weight": "pytorch_model-00027-of-00030.bin",
|
646 |
+
"model.layers.72.self_attn.v_proj.weight": "pytorch_model-00027-of-00030.bin",
|
647 |
+
"model.layers.73.input_layernorm.weight": "pytorch_model-00027-of-00030.bin",
|
648 |
+
"model.layers.73.mlp.down_proj.weight": "pytorch_model-00027-of-00030.bin",
|
649 |
+
"model.layers.73.mlp.gate_proj.weight": "pytorch_model-00027-of-00030.bin",
|
650 |
+
"model.layers.73.mlp.up_proj.weight": "pytorch_model-00027-of-00030.bin",
|
651 |
+
"model.layers.73.post_attention_layernorm.weight": "pytorch_model-00027-of-00030.bin",
|
652 |
+
"model.layers.73.self_attn.k_proj.weight": "pytorch_model-00027-of-00030.bin",
|
653 |
+
"model.layers.73.self_attn.o_proj.weight": "pytorch_model-00027-of-00030.bin",
|
654 |
+
"model.layers.73.self_attn.q_proj.weight": "pytorch_model-00027-of-00030.bin",
|
655 |
+
"model.layers.73.self_attn.v_proj.weight": "pytorch_model-00027-of-00030.bin",
|
656 |
+
"model.layers.74.input_layernorm.weight": "pytorch_model-00028-of-00030.bin",
|
657 |
+
"model.layers.74.mlp.down_proj.weight": "pytorch_model-00028-of-00030.bin",
|
658 |
+
"model.layers.74.mlp.gate_proj.weight": "pytorch_model-00028-of-00030.bin",
|
659 |
+
"model.layers.74.mlp.up_proj.weight": "pytorch_model-00028-of-00030.bin",
|
660 |
+
"model.layers.74.post_attention_layernorm.weight": "pytorch_model-00028-of-00030.bin",
|
661 |
+
"model.layers.74.self_attn.k_proj.weight": "pytorch_model-00027-of-00030.bin",
|
662 |
+
"model.layers.74.self_attn.o_proj.weight": "pytorch_model-00027-of-00030.bin",
|
663 |
+
"model.layers.74.self_attn.q_proj.weight": "pytorch_model-00027-of-00030.bin",
|
664 |
+
"model.layers.74.self_attn.v_proj.weight": "pytorch_model-00027-of-00030.bin",
|
665 |
+
"model.layers.75.input_layernorm.weight": "pytorch_model-00028-of-00030.bin",
|
666 |
+
"model.layers.75.mlp.down_proj.weight": "pytorch_model-00028-of-00030.bin",
|
667 |
+
"model.layers.75.mlp.gate_proj.weight": "pytorch_model-00028-of-00030.bin",
|
668 |
+
"model.layers.75.mlp.up_proj.weight": "pytorch_model-00028-of-00030.bin",
|
669 |
+
"model.layers.75.post_attention_layernorm.weight": "pytorch_model-00028-of-00030.bin",
|
670 |
+
"model.layers.75.self_attn.k_proj.weight": "pytorch_model-00028-of-00030.bin",
|
671 |
+
"model.layers.75.self_attn.o_proj.weight": "pytorch_model-00028-of-00030.bin",
|
672 |
+
"model.layers.75.self_attn.q_proj.weight": "pytorch_model-00028-of-00030.bin",
|
673 |
+
"model.layers.75.self_attn.v_proj.weight": "pytorch_model-00028-of-00030.bin",
|
674 |
+
"model.layers.76.input_layernorm.weight": "pytorch_model-00028-of-00030.bin",
|
675 |
+
"model.layers.76.mlp.down_proj.weight": "pytorch_model-00028-of-00030.bin",
|
676 |
+
"model.layers.76.mlp.gate_proj.weight": "pytorch_model-00028-of-00030.bin",
|
677 |
+
"model.layers.76.mlp.up_proj.weight": "pytorch_model-00028-of-00030.bin",
|
678 |
+
"model.layers.76.post_attention_layernorm.weight": "pytorch_model-00028-of-00030.bin",
|
679 |
+
"model.layers.76.self_attn.k_proj.weight": "pytorch_model-00028-of-00030.bin",
|
680 |
+
"model.layers.76.self_attn.o_proj.weight": "pytorch_model-00028-of-00030.bin",
|
681 |
+
"model.layers.76.self_attn.q_proj.weight": "pytorch_model-00028-of-00030.bin",
|
682 |
+
"model.layers.76.self_attn.v_proj.weight": "pytorch_model-00028-of-00030.bin",
|
683 |
+
"model.layers.77.input_layernorm.weight": "pytorch_model-00029-of-00030.bin",
|
684 |
+
"model.layers.77.mlp.down_proj.weight": "pytorch_model-00029-of-00030.bin",
|
685 |
+
"model.layers.77.mlp.gate_proj.weight": "pytorch_model-00029-of-00030.bin",
|
686 |
+
"model.layers.77.mlp.up_proj.weight": "pytorch_model-00029-of-00030.bin",
|
687 |
+
"model.layers.77.post_attention_layernorm.weight": "pytorch_model-00029-of-00030.bin",
|
688 |
+
"model.layers.77.self_attn.k_proj.weight": "pytorch_model-00028-of-00030.bin",
|
689 |
+
"model.layers.77.self_attn.o_proj.weight": "pytorch_model-00029-of-00030.bin",
|
690 |
+
"model.layers.77.self_attn.q_proj.weight": "pytorch_model-00028-of-00030.bin",
|
691 |
+
"model.layers.77.self_attn.v_proj.weight": "pytorch_model-00028-of-00030.bin",
|
692 |
+
"model.layers.78.input_layernorm.weight": "pytorch_model-00029-of-00030.bin",
|
693 |
+
"model.layers.78.mlp.down_proj.weight": "pytorch_model-00029-of-00030.bin",
|
694 |
+
"model.layers.78.mlp.gate_proj.weight": "pytorch_model-00029-of-00030.bin",
|
695 |
+
"model.layers.78.mlp.up_proj.weight": "pytorch_model-00029-of-00030.bin",
|
696 |
+
"model.layers.78.post_attention_layernorm.weight": "pytorch_model-00029-of-00030.bin",
|
697 |
+
"model.layers.78.self_attn.k_proj.weight": "pytorch_model-00029-of-00030.bin",
|
698 |
+
"model.layers.78.self_attn.o_proj.weight": "pytorch_model-00029-of-00030.bin",
|
699 |
+
"model.layers.78.self_attn.q_proj.weight": "pytorch_model-00029-of-00030.bin",
|
700 |
+
"model.layers.78.self_attn.v_proj.weight": "pytorch_model-00029-of-00030.bin",
|
701 |
+
"model.layers.79.input_layernorm.weight": "pytorch_model-00029-of-00030.bin",
|
702 |
+
"model.layers.79.mlp.down_proj.weight": "pytorch_model-00029-of-00030.bin",
|
703 |
+
"model.layers.79.mlp.gate_proj.weight": "pytorch_model-00029-of-00030.bin",
|
704 |
+
"model.layers.79.mlp.up_proj.weight": "pytorch_model-00029-of-00030.bin",
|
705 |
+
"model.layers.79.post_attention_layernorm.weight": "pytorch_model-00029-of-00030.bin",
|
706 |
+
"model.layers.79.self_attn.k_proj.weight": "pytorch_model-00029-of-00030.bin",
|
707 |
+
"model.layers.79.self_attn.o_proj.weight": "pytorch_model-00029-of-00030.bin",
|
708 |
+
"model.layers.79.self_attn.q_proj.weight": "pytorch_model-00029-of-00030.bin",
|
709 |
+
"model.layers.79.self_attn.v_proj.weight": "pytorch_model-00029-of-00030.bin",
|
710 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00004-of-00030.bin",
|
711 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00004-of-00030.bin",
|
712 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00004-of-00030.bin",
|
713 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00004-of-00030.bin",
|
714 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00004-of-00030.bin",
|
715 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00004-of-00030.bin",
|
716 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00004-of-00030.bin",
|
717 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00004-of-00030.bin",
|
718 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00004-of-00030.bin",
|
719 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00004-of-00030.bin",
|
720 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00004-of-00030.bin",
|
721 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00004-of-00030.bin",
|
722 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00004-of-00030.bin",
|
723 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00004-of-00030.bin",
|
724 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00004-of-00030.bin",
|
725 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00004-of-00030.bin",
|
726 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00004-of-00030.bin",
|
727 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00004-of-00030.bin",
|
728 |
+
"model.norm.weight": "pytorch_model-00029-of-00030.bin"
|
729 |
+
}
|
730 |
+
}
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end_of_text|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|end_of_text|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
The diff for this file is too large to render.
See raw diff
|
|
@@ -0,0 +1,2063 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|reserved_special_token_2|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_3|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|reserved_special_token_4|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|reserved_special_token_5|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_6|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_7|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_8|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_9|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_10|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_11|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_12|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_13|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_14|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_15|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_16|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_17|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_18|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_19|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_20|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_21|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_22|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_23|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_24|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_25|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_26|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_27|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_28|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_29|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_30|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_31|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_32|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_33|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_34|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_35|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_36|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_37|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_38|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_39|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_40|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_41|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_42|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_43|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_44|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_45|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_46|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_47|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_48|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_49|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_50|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_51|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_52|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_53|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_54|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_55|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_56|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_57|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_58|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_59|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_60|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_61|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_62|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_63|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_64|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_65|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_66|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_67|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_68|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_69|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_70|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_71|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_72|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_73|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_74|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_75|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_76|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_77|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_78|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_79|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_80|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_81|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_82|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_83|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_84|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_85|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_86|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_87|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_88|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_89|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_90|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_91|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_92|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_93|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_94|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_95|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_96|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_97|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_98|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_99|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_100|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_101|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_102|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_103|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_104|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_105|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_106|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_107|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_108|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_109|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_110|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_111|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_112|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_113|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_114|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_115|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_116|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_117|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_118|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_119|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_120|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_121|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_122|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_123|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_124|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_125|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_126|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_127|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_128|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_129|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_130|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_131|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_132|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_133|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_134|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_135|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_136|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_137|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_138|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_139|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_140|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_141|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_142|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_143|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_144|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_145|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_146|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_147|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_148|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_149|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_150|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_151|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_152|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_153|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_154|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_155|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_156|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_157|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_158|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_159|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_160|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_161|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_162|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_163|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_164|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_165|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_166|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_167|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_168|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_169|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_170|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_171|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_172|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_173|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_174|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_175|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_176|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_177|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_178|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_179|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_180|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_181|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_182|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_183|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_184|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_185|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_186|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_187|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_188|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_189|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_190|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_191|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_192|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_193|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_194|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_195|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_196|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_197|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_198|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_199|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_200|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_201|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_202|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_203|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_204|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_205|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_206|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_207|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_208|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_209|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_210|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_211|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_212|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_213|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_214|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_215|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_216|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_217|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_218|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_219|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_220|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_221|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_222|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_223|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_224|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_225|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_226|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_227|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_228|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_229|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_230|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_231|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_232|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_233|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_234|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_235|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_236|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_237|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_238|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_239|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_240|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_241|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_242|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_243|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_244|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_245|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_246|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_247|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_248|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_249|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_250|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
}
|
2051 |
+
},
|
2052 |
+
"bos_token": "<|begin_of_text|>",
|
2053 |
+
"chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
|
2054 |
+
"clean_up_tokenization_spaces": true,
|
2055 |
+
"eos_token": "<|end_of_text|>",
|
2056 |
+
"model_input_names": [
|
2057 |
+
"input_ids",
|
2058 |
+
"attention_mask"
|
2059 |
+
],
|
2060 |
+
"model_max_length": 1000000000000000019884624838656,
|
2061 |
+
"pad_token": "<|end_of_text|>",
|
2062 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2063 |
+
}
|