Adding model files
Browse files- README.md +154 -0
- config.json +51 -0
- example.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: sklearn
|
4 |
+
tags:
|
5 |
+
- sklearn
|
6 |
+
- skops
|
7 |
+
- tabular-regression
|
8 |
+
widget:
|
9 |
+
structuredData:
|
10 |
+
Height:
|
11 |
+
- 11.52
|
12 |
+
- 12.48
|
13 |
+
- 12.3778
|
14 |
+
Length1:
|
15 |
+
- 23.2
|
16 |
+
- 24.0
|
17 |
+
- 23.9
|
18 |
+
Length2:
|
19 |
+
- 25.4
|
20 |
+
- 26.3
|
21 |
+
- 26.5
|
22 |
+
Length3:
|
23 |
+
- 30.0
|
24 |
+
- 31.2
|
25 |
+
- 31.1
|
26 |
+
Species:
|
27 |
+
- Bream
|
28 |
+
- Bream
|
29 |
+
- Bream
|
30 |
+
Width:
|
31 |
+
- 4.02
|
32 |
+
- 4.3056
|
33 |
+
- 4.6961
|
34 |
+
---
|
35 |
+
|
36 |
+
# Model description
|
37 |
+
|
38 |
+
This is a GradientBoostingRegressor on a fish dataset.
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
This model is intended for educational purposes.
|
43 |
+
|
44 |
+
## Training Procedure
|
45 |
+
|
46 |
+
### Hyperparameters
|
47 |
+
|
48 |
+
The model is trained with below hyperparameters.
|
49 |
+
|
50 |
+
<details>
|
51 |
+
<summary> Click to expand </summary>
|
52 |
+
|
53 |
+
| Hyperparameter | Value |
|
54 |
+
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
55 |
+
| memory | |
|
56 |
+
| steps | [('columntransformer', ColumnTransformer(remainder='passthrough',
|
57 |
+
transformers=[('onehotencoder',
|
58 |
+
OneHotEncoder(handle_unknown='ignore',
|
59 |
+
sparse=False),
|
60 |
+
<sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)])), ('gradientboostingregressor', GradientBoostingRegressor(random_state=42))] |
|
61 |
+
| verbose | False |
|
62 |
+
| columntransformer | ColumnTransformer(remainder='passthrough',
|
63 |
+
transformers=[('onehotencoder',
|
64 |
+
OneHotEncoder(handle_unknown='ignore',
|
65 |
+
sparse=False),
|
66 |
+
<sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)]) |
|
67 |
+
| gradientboostingregressor | GradientBoostingRegressor(random_state=42) |
|
68 |
+
| columntransformer__n_jobs | |
|
69 |
+
| columntransformer__remainder | passthrough |
|
70 |
+
| columntransformer__sparse_threshold | 0.3 |
|
71 |
+
| columntransformer__transformer_weights | |
|
72 |
+
| columntransformer__transformers | [('onehotencoder', OneHotEncoder(handle_unknown='ignore', sparse=False), <sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)] |
|
73 |
+
| columntransformer__verbose | False |
|
74 |
+
| columntransformer__verbose_feature_names_out | True |
|
75 |
+
| columntransformer__onehotencoder | OneHotEncoder(handle_unknown='ignore', sparse=False) |
|
76 |
+
| columntransformer__onehotencoder__categories | auto |
|
77 |
+
| columntransformer__onehotencoder__drop | |
|
78 |
+
| columntransformer__onehotencoder__dtype | <class 'numpy.float64'> |
|
79 |
+
| columntransformer__onehotencoder__handle_unknown | ignore |
|
80 |
+
| columntransformer__onehotencoder__sparse | False |
|
81 |
+
| gradientboostingregressor__alpha | 0.9 |
|
82 |
+
| gradientboostingregressor__ccp_alpha | 0.0 |
|
83 |
+
| gradientboostingregressor__criterion | friedman_mse |
|
84 |
+
| gradientboostingregressor__init | |
|
85 |
+
| gradientboostingregressor__learning_rate | 0.1 |
|
86 |
+
| gradientboostingregressor__loss | squared_error |
|
87 |
+
| gradientboostingregressor__max_depth | 3 |
|
88 |
+
| gradientboostingregressor__max_features | |
|
89 |
+
| gradientboostingregressor__max_leaf_nodes | |
|
90 |
+
| gradientboostingregressor__min_impurity_decrease | 0.0 |
|
91 |
+
| gradientboostingregressor__min_samples_leaf | 1 |
|
92 |
+
| gradientboostingregressor__min_samples_split | 2 |
|
93 |
+
| gradientboostingregressor__min_weight_fraction_leaf | 0.0 |
|
94 |
+
| gradientboostingregressor__n_estimators | 100 |
|
95 |
+
| gradientboostingregressor__n_iter_no_change | |
|
96 |
+
| gradientboostingregressor__random_state | 42 |
|
97 |
+
| gradientboostingregressor__subsample | 1.0 |
|
98 |
+
| gradientboostingregressor__tol | 0.0001 |
|
99 |
+
| gradientboostingregressor__validation_fraction | 0.1 |
|
100 |
+
| gradientboostingregressor__verbose | 0 |
|
101 |
+
| gradientboostingregressor__warm_start | False |
|
102 |
+
|
103 |
+
</details>
|
104 |
+
|
105 |
+
### Model Plot
|
106 |
+
|
107 |
+
The model plot is below.
|
108 |
+
|
109 |
+
<style>#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 {color: black;background-color: white;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 pre{padding: 0;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-toggleable {background-color: white;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-estimator:hover {background-color: #d4ebff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-item {z-index: 1;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel-item:only-child::after {width: 0;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-text-repr-fallback {display: none;}</style><div id="sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('columntransformer',ColumnTransformer(remainder='passthrough',transformers=[('onehotencoder',OneHotEncoder(handle_unknown='ignore',sparse=False),<sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)])),('gradientboostingregressor',GradientBoostingRegressor(random_state=42))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="f6612892-c085-4dd9-8dca-9cb8081c3777" type="checkbox" ><label for="f6612892-c085-4dd9-8dca-9cb8081c3777" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('columntransformer',ColumnTransformer(remainder='passthrough',transformers=[('onehotencoder',OneHotEncoder(handle_unknown='ignore',sparse=False),<sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)])),('gradientboostingregressor',GradientBoostingRegressor(random_state=42))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3d74f98b-ae31-452d-af87-2c65b0323ba2" type="checkbox" ><label for="3d74f98b-ae31-452d-af87-2c65b0323ba2" class="sk-toggleable__label sk-toggleable__label-arrow">columntransformer: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder='passthrough',transformers=[('onehotencoder',OneHotEncoder(handle_unknown='ignore',sparse=False),<sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="4af39992-03cf-4522-a288-2db0a787a63c" type="checkbox" ><label for="4af39992-03cf-4522-a288-2db0a787a63c" class="sk-toggleable__label sk-toggleable__label-arrow">onehotencoder</label><div class="sk-toggleable__content"><pre><sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0></pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="519d5e51-5fa6-45d6-a3f7-59c11370402d" type="checkbox" ><label for="519d5e51-5fa6-45d6-a3f7-59c11370402d" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown='ignore', sparse=False)</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="7ede29a7-2614-4eed-a021-e85f1aaa5659" type="checkbox" ><label for="7ede29a7-2614-4eed-a021-e85f1aaa5659" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>['Length1', 'Length2', 'Length3', 'Height', 'Width']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="69357535-0314-4987-a311-112335d2cb52" type="checkbox" ><label for="69357535-0314-4987-a311-112335d2cb52" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="f247fbf2-2247-4e99-aaa2-f6fb89ce1b13" type="checkbox" ><label for="f247fbf2-2247-4e99-aaa2-f6fb89ce1b13" class="sk-toggleable__label sk-toggleable__label-arrow">GradientBoostingRegressor</label><div class="sk-toggleable__content"><pre>GradientBoostingRegressor(random_state=42)</pre></div></div></div></div></div></div></div>
|
110 |
+
|
111 |
+
##Â Evaluation Results
|
112 |
+
|
113 |
+
You can find the details about evaluation process and the evaluation results.
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
| Metric | Value |
|
118 |
+
|----------|---------|
|
119 |
+
|
120 |
+
# How to Get Started with the Model
|
121 |
+
|
122 |
+
Use the code below to get started with the model.
|
123 |
+
|
124 |
+
<details>
|
125 |
+
<summary> Click to expand </summary>
|
126 |
+
|
127 |
+
```python
|
128 |
+
[More Information Needed]
|
129 |
+
```
|
130 |
+
|
131 |
+
</details>
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
# Model Card Authors
|
137 |
+
|
138 |
+
This model card is written by following authors:
|
139 |
+
|
140 |
+
Brenden Connors
|
141 |
+
|
142 |
+
# Model Card Contact
|
143 |
+
|
144 |
+
You can contact the model card authors through following channels:
|
145 |
+
[More Information Needed]
|
146 |
+
|
147 |
+
# Citation
|
148 |
+
|
149 |
+
Below you can find information related to citation.
|
150 |
+
|
151 |
+
**BibTeX:**
|
152 |
+
```
|
153 |
+
[More Information Needed]
|
154 |
+
```
|
config.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"Species",
|
5 |
+
"Length1",
|
6 |
+
"Length2",
|
7 |
+
"Length3",
|
8 |
+
"Height",
|
9 |
+
"Width"
|
10 |
+
],
|
11 |
+
"environment": [
|
12 |
+
"scikit-learn=1.0.2"
|
13 |
+
],
|
14 |
+
"example_input": {
|
15 |
+
"Height": [
|
16 |
+
11.52,
|
17 |
+
12.48,
|
18 |
+
12.3778
|
19 |
+
],
|
20 |
+
"Length1": [
|
21 |
+
23.2,
|
22 |
+
24.0,
|
23 |
+
23.9
|
24 |
+
],
|
25 |
+
"Length2": [
|
26 |
+
25.4,
|
27 |
+
26.3,
|
28 |
+
26.5
|
29 |
+
],
|
30 |
+
"Length3": [
|
31 |
+
30.0,
|
32 |
+
31.2,
|
33 |
+
31.1
|
34 |
+
],
|
35 |
+
"Species": [
|
36 |
+
"Bream",
|
37 |
+
"Bream",
|
38 |
+
"Bream"
|
39 |
+
],
|
40 |
+
"Width": [
|
41 |
+
4.02,
|
42 |
+
4.3056,
|
43 |
+
4.6961
|
44 |
+
]
|
45 |
+
},
|
46 |
+
"model": {
|
47 |
+
"file": "example.pkl"
|
48 |
+
},
|
49 |
+
"task": "tabular-regression"
|
50 |
+
}
|
51 |
+
}
|
example.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10a9f41e1edb4d43ae237933edd469c930e9a1c1635d7ed2dd2743a88c807db2
|
3 |
+
size 117910
|