brendenc commited on
Commit
f174ae3
1 Parent(s): 85d2093

Adding model files

Browse files
Files changed (3) hide show
  1. README.md +154 -0
  2. config.json +51 -0
  3. example.pkl +3 -0
README.md ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: sklearn
4
+ tags:
5
+ - sklearn
6
+ - skops
7
+ - tabular-regression
8
+ widget:
9
+ structuredData:
10
+ Height:
11
+ - 11.52
12
+ - 12.48
13
+ - 12.3778
14
+ Length1:
15
+ - 23.2
16
+ - 24.0
17
+ - 23.9
18
+ Length2:
19
+ - 25.4
20
+ - 26.3
21
+ - 26.5
22
+ Length3:
23
+ - 30.0
24
+ - 31.2
25
+ - 31.1
26
+ Species:
27
+ - Bream
28
+ - Bream
29
+ - Bream
30
+ Width:
31
+ - 4.02
32
+ - 4.3056
33
+ - 4.6961
34
+ ---
35
+
36
+ # Model description
37
+
38
+ This is a GradientBoostingRegressor on a fish dataset.
39
+
40
+ ## Intended uses & limitations
41
+
42
+ This model is intended for educational purposes.
43
+
44
+ ## Training Procedure
45
+
46
+ ### Hyperparameters
47
+
48
+ The model is trained with below hyperparameters.
49
+
50
+ <details>
51
+ <summary> Click to expand </summary>
52
+
53
+ | Hyperparameter | Value |
54
+ |-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
55
+ | memory | |
56
+ | steps | [('columntransformer', ColumnTransformer(remainder='passthrough',
57
+ transformers=[('onehotencoder',
58
+ OneHotEncoder(handle_unknown='ignore',
59
+ sparse=False),
60
+ <sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)])), ('gradientboostingregressor', GradientBoostingRegressor(random_state=42))] |
61
+ | verbose | False |
62
+ | columntransformer | ColumnTransformer(remainder='passthrough',
63
+ transformers=[('onehotencoder',
64
+ OneHotEncoder(handle_unknown='ignore',
65
+ sparse=False),
66
+ <sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)]) |
67
+ | gradientboostingregressor | GradientBoostingRegressor(random_state=42) |
68
+ | columntransformer__n_jobs | |
69
+ | columntransformer__remainder | passthrough |
70
+ | columntransformer__sparse_threshold | 0.3 |
71
+ | columntransformer__transformer_weights | |
72
+ | columntransformer__transformers | [('onehotencoder', OneHotEncoder(handle_unknown='ignore', sparse=False), <sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)] |
73
+ | columntransformer__verbose | False |
74
+ | columntransformer__verbose_feature_names_out | True |
75
+ | columntransformer__onehotencoder | OneHotEncoder(handle_unknown='ignore', sparse=False) |
76
+ | columntransformer__onehotencoder__categories | auto |
77
+ | columntransformer__onehotencoder__drop | |
78
+ | columntransformer__onehotencoder__dtype | <class 'numpy.float64'> |
79
+ | columntransformer__onehotencoder__handle_unknown | ignore |
80
+ | columntransformer__onehotencoder__sparse | False |
81
+ | gradientboostingregressor__alpha | 0.9 |
82
+ | gradientboostingregressor__ccp_alpha | 0.0 |
83
+ | gradientboostingregressor__criterion | friedman_mse |
84
+ | gradientboostingregressor__init | |
85
+ | gradientboostingregressor__learning_rate | 0.1 |
86
+ | gradientboostingregressor__loss | squared_error |
87
+ | gradientboostingregressor__max_depth | 3 |
88
+ | gradientboostingregressor__max_features | |
89
+ | gradientboostingregressor__max_leaf_nodes | |
90
+ | gradientboostingregressor__min_impurity_decrease | 0.0 |
91
+ | gradientboostingregressor__min_samples_leaf | 1 |
92
+ | gradientboostingregressor__min_samples_split | 2 |
93
+ | gradientboostingregressor__min_weight_fraction_leaf | 0.0 |
94
+ | gradientboostingregressor__n_estimators | 100 |
95
+ | gradientboostingregressor__n_iter_no_change | |
96
+ | gradientboostingregressor__random_state | 42 |
97
+ | gradientboostingregressor__subsample | 1.0 |
98
+ | gradientboostingregressor__tol | 0.0001 |
99
+ | gradientboostingregressor__validation_fraction | 0.1 |
100
+ | gradientboostingregressor__verbose | 0 |
101
+ | gradientboostingregressor__warm_start | False |
102
+
103
+ </details>
104
+
105
+ ### Model Plot
106
+
107
+ The model plot is below.
108
+
109
+ <style>#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 {color: black;background-color: white;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 pre{padding: 0;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-toggleable {background-color: white;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-estimator:hover {background-color: #d4ebff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-item {z-index: 1;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel-item:only-child::after {width: 0;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-text-repr-fallback {display: none;}</style><div id="sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;onehotencoder&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse=False),&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0&gt;)])),(&#x27;gradientboostingregressor&#x27;,GradientBoostingRegressor(random_state=42))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="f6612892-c085-4dd9-8dca-9cb8081c3777" type="checkbox" ><label for="f6612892-c085-4dd9-8dca-9cb8081c3777" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;onehotencoder&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse=False),&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0&gt;)])),(&#x27;gradientboostingregressor&#x27;,GradientBoostingRegressor(random_state=42))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3d74f98b-ae31-452d-af87-2c65b0323ba2" type="checkbox" ><label for="3d74f98b-ae31-452d-af87-2c65b0323ba2" class="sk-toggleable__label sk-toggleable__label-arrow">columntransformer: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;onehotencoder&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse=False),&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0&gt;)])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="4af39992-03cf-4522-a288-2db0a787a63c" type="checkbox" ><label for="4af39992-03cf-4522-a288-2db0a787a63c" class="sk-toggleable__label sk-toggleable__label-arrow">onehotencoder</label><div class="sk-toggleable__content"><pre>&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0&gt;</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="519d5e51-5fa6-45d6-a3f7-59c11370402d" type="checkbox" ><label for="519d5e51-5fa6-45d6-a3f7-59c11370402d" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;, sparse=False)</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="7ede29a7-2614-4eed-a021-e85f1aaa5659" type="checkbox" ><label for="7ede29a7-2614-4eed-a021-e85f1aaa5659" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>[&#x27;Length1&#x27;, &#x27;Length2&#x27;, &#x27;Length3&#x27;, &#x27;Height&#x27;, &#x27;Width&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="69357535-0314-4987-a311-112335d2cb52" type="checkbox" ><label for="69357535-0314-4987-a311-112335d2cb52" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="f247fbf2-2247-4e99-aaa2-f6fb89ce1b13" type="checkbox" ><label for="f247fbf2-2247-4e99-aaa2-f6fb89ce1b13" class="sk-toggleable__label sk-toggleable__label-arrow">GradientBoostingRegressor</label><div class="sk-toggleable__content"><pre>GradientBoostingRegressor(random_state=42)</pre></div></div></div></div></div></div></div>
110
+
111
+ ## Evaluation Results
112
+
113
+ You can find the details about evaluation process and the evaluation results.
114
+
115
+
116
+
117
+ | Metric | Value |
118
+ |----------|---------|
119
+
120
+ # How to Get Started with the Model
121
+
122
+ Use the code below to get started with the model.
123
+
124
+ <details>
125
+ <summary> Click to expand </summary>
126
+
127
+ ```python
128
+ [More Information Needed]
129
+ ```
130
+
131
+ </details>
132
+
133
+
134
+
135
+
136
+ # Model Card Authors
137
+
138
+ This model card is written by following authors:
139
+
140
+ Brenden Connors
141
+
142
+ # Model Card Contact
143
+
144
+ You can contact the model card authors through following channels:
145
+ [More Information Needed]
146
+
147
+ # Citation
148
+
149
+ Below you can find information related to citation.
150
+
151
+ **BibTeX:**
152
+ ```
153
+ [More Information Needed]
154
+ ```
config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "Species",
5
+ "Length1",
6
+ "Length2",
7
+ "Length3",
8
+ "Height",
9
+ "Width"
10
+ ],
11
+ "environment": [
12
+ "scikit-learn=1.0.2"
13
+ ],
14
+ "example_input": {
15
+ "Height": [
16
+ 11.52,
17
+ 12.48,
18
+ 12.3778
19
+ ],
20
+ "Length1": [
21
+ 23.2,
22
+ 24.0,
23
+ 23.9
24
+ ],
25
+ "Length2": [
26
+ 25.4,
27
+ 26.3,
28
+ 26.5
29
+ ],
30
+ "Length3": [
31
+ 30.0,
32
+ 31.2,
33
+ 31.1
34
+ ],
35
+ "Species": [
36
+ "Bream",
37
+ "Bream",
38
+ "Bream"
39
+ ],
40
+ "Width": [
41
+ 4.02,
42
+ 4.3056,
43
+ 4.6961
44
+ ]
45
+ },
46
+ "model": {
47
+ "file": "example.pkl"
48
+ },
49
+ "task": "tabular-regression"
50
+ }
51
+ }
example.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10a9f41e1edb4d43ae237933edd469c930e9a1c1635d7ed2dd2743a88c807db2
3
+ size 117910