import os import torch import argparse import numpy as np from skimage import io from ormbg.models.ormbg import ORMBG import torch.nn.functional as F def parse_args(): parser = argparse.ArgumentParser( description="Remove background from images using ORMBG model." ) parser.add_argument( "--prediction", type=list, default=[ os.path.join("examples", "loss", "loss01.png"), os.path.join("examples", "loss", "loss02.png"), os.path.join("examples", "loss", "loss03.png"), os.path.join("examples", "loss", "loss04.png"), os.path.join("examples", "loss", "loss05.png"), ], help="Path to the input image file.", ) parser.add_argument( "--gt", type=str, default=os.path.join("examples", "loss", "gt.png"), help="Ground truth mask", ) return parser.parse_args() def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor: if len(im.shape) < 3: im = im[:, :, np.newaxis] im_tensor = torch.tensor(im, dtype=torch.float32).permute(2, 0, 1) im_tensor = F.interpolate( torch.unsqueeze(im_tensor, 0), size=model_input_size, mode="bilinear" ).type(torch.uint8) image = torch.divide(im_tensor, 255.0) return image def inference(args): prediction_paths = args.prediction gt_path = args.gt net = ORMBG() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") for pred_path in prediction_paths: model_input_size = [1024, 1024] loss = io.imread(pred_path) prediction = preprocess_image(loss, model_input_size).to(device) model_input_size = [1024, 1024] gt = io.imread(gt_path) ground_truth = preprocess_image(gt, model_input_size).to(device) _, loss = net.compute_loss([prediction], ground_truth) print(f"Loss: {pred_path} {loss}") if __name__ == "__main__": inference(parse_args())