|
|
|
|
|
|
|
|
|
@@ -40,7 +40,7 @@ if __name__ == "__main__": |
|
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1) |
|
im_tensor = F.upsample(torch.unsqueeze(im_tensor,0), input_size, mode="bilinear").type(torch.uint8) |
|
image = torch.divide(im_tensor,255.0) |
|
- image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0]) |
|
+ #image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0]) |
|
|
|
if torch.cuda.is_available(): |
|
image=image.cuda() |
|
|
|
|
|
|
|
|
|
@@ -536,10 +536,10 @@ def main(train_datasets, |
|
cache_size = hypar["cache_size"], |
|
cache_boost = hypar["cache_boost_train"], |
|
my_transforms = [ |
|
- GOSRandomHFlip(), ## this line can be uncommented for horizontal flip augmetation |
|
+ #GOSRandomHFlip(), ## this line can be uncommented for horizontal flip augmetation |
|
# GOSResize(hypar["input_size"]), |
|
# GOSRandomCrop(hypar["crop_size"]), ## this line can be uncommented for randomcrop augmentation |
|
- GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0]), |
|
+ #GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0]), |
|
], |
|
batch_size = hypar["batch_size_train"], |
|
shuffle = True) |
|
@@ -547,7 +547,7 @@ def main(train_datasets, |
|
cache_size = hypar["cache_size"], |
|
cache_boost = hypar["cache_boost_train"], |
|
my_transforms = [ |
|
- GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0]), |
|
+ #GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0]), |
|
], |
|
batch_size = hypar["batch_size_valid"], |
|
shuffle = False) |
|
@@ -561,7 +561,7 @@ def main(train_datasets, |
|
cache_size = hypar["cache_size"], |
|
cache_boost = hypar["cache_boost_valid"], |
|
my_transforms = [ |
|
- GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0]), |
|
+ #GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0]), |
|
# GOSResize(hypar["input_size"]) |
|
], |
|
batch_size=hypar["batch_size_valid"], |
|
@@ -618,19 +618,19 @@ if __name__ == "__main__": |
|
train_datasets, valid_datasets = [], [] |
|
dataset_1, dataset_1 = {}, {} |
|
|
|
- dataset_tr = {"name": "DIS5K-TR", |
|
- "im_dir": "../DIS5K/DIS-TR/im", |
|
- "gt_dir": "../DIS5K/DIS-TR/gt", |
|
- "im_ext": ".jpg", |
|
+ dataset_tr = {"name": "training", |
|
+ "im_dir": "../training/im", |
|
+ "gt_dir": "../training/gt", |
|
+ "im_ext": ".png", |
|
"gt_ext": ".png", |
|
- "cache_dir":"../DIS5K-Cache/DIS-TR"} |
|
+ "cache_dir":"../cache/training"} |
|
|
|
- dataset_vd = {"name": "DIS5K-VD", |
|
- "im_dir": "../DIS5K/DIS-VD/im", |
|
- "gt_dir": "../DIS5K/DIS-VD/gt", |
|
- "im_ext": ".jpg", |
|
+ dataset_vd = {"name": "validation", |
|
+ "im_dir": "../validation/im", |
|
+ "gt_dir": "../validation/gt", |
|
+ "im_ext": ".png", |
|
"gt_ext": ".png", |
|
- "cache_dir":"../DIS5K-Cache/DIS-VD"} |
|
+ "cache_dir":"../cache/validation"} |
|
|
|
dataset_te1 = {"name": "DIS5K-TE1", |
|
"im_dir": "../DIS5K/DIS-TE1/im", |
|
@@ -685,7 +685,7 @@ if __name__ == "__main__": |
|
if hypar["mode"] == "train": |
|
hypar["valid_out_dir"] = "" ## for "train" model leave it as "", for "valid"("inference") mode: set it according to your local directory |
|
hypar["model_path"] ="../saved_models/IS-Net-test" ## model weights saving (or restoring) path |
|
- hypar["restore_model"] = "" ## name of the segmentation model weights .pth for resume training process from last stop or for the inferencing |
|
+ hypar["restore_model"] = "isnet-base-model.pth" ## name of the segmentation model weights .pth for resume training process from last stop or for the inferencing |
|
hypar["start_ite"] = 0 ## start iteration for the training, can be changed to match the restored training process |
|
hypar["gt_encoder_model"] = "" |
|
else: ## configure the segmentation output path and the to-be-used model weights path |
|
|