|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
from skimage import io |
|
from ormbg import ORMBG |
|
import torch.nn.functional as F |
|
|
|
|
|
def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor: |
|
if len(im.shape) < 3: |
|
im = im[:, :, np.newaxis] |
|
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2, 0, 1) |
|
im_tensor = F.interpolate( |
|
torch.unsqueeze(im_tensor, 0), size=model_input_size, mode="bilinear" |
|
).type(torch.uint8) |
|
image = torch.divide(im_tensor, 255.0) |
|
return image |
|
|
|
|
|
def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray: |
|
result = torch.squeeze(F.interpolate(result, size=im_size, mode="bilinear"), 0) |
|
ma = torch.max(result) |
|
mi = torch.min(result) |
|
result = (result - mi) / (ma - mi) |
|
im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8) |
|
im_array = np.squeeze(im_array) |
|
return im_array |
|
|
|
|
|
def example_inference(): |
|
|
|
image_path = "example.png" |
|
result_name = "no-background.png" |
|
|
|
net = ORMBG() |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
if torch.cuda.is_available(): |
|
net.load_state_dict(torch.load("models/ormbg.pth")) |
|
net = net.cuda() |
|
else: |
|
net.load_state_dict(torch.load("models/ormbg.pth", map_location="cpu")) |
|
net.eval() |
|
|
|
model_input_size = [1024, 1024] |
|
orig_im = io.imread(image_path) |
|
orig_im_size = orig_im.shape[0:2] |
|
image = preprocess_image(orig_im, model_input_size).to(device) |
|
|
|
result = net(image) |
|
|
|
|
|
result_image = postprocess_image(result[0][0], orig_im_size) |
|
|
|
|
|
pil_im = Image.fromarray(result_image) |
|
no_bg_image = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) |
|
orig_image = Image.open(image_path) |
|
no_bg_image.paste(orig_image, mask=pil_im) |
|
no_bg_image.save(result_name) |
|
|
|
|
|
if __name__ == "__main__": |
|
example_inference() |
|
|