satyanshu404 commited on
Commit
e319cfe
1 Parent(s): 55fafa0

Model save

Browse files
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - trl
4
+ - sft
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: Phi-3-mini-4k-instruct-full-finetuned-v01
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # Phi-3-mini-4k-instruct-full-finetuned-v01
15
+
16
+ This model was trained from scratch on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.4590
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 3e-05
38
+ - train_batch_size: 2
39
+ - eval_batch_size: 2
40
+ - seed: 0
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: cosine
43
+ - lr_scheduler_warmup_ratio: 0.2
44
+ - num_epochs: 1
45
+
46
+ ### Training results
47
+
48
+
49
+
50
+ ### Framework versions
51
+
52
+ - Transformers 4.43.3
53
+ - Pytorch 2.2.2+cu121
54
+ - Datasets 2.20.0
55
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.4590456783771515,
4
+ "eval_runtime": 233.2276,
5
+ "eval_samples": 558,
6
+ "eval_samples_per_second": 2.393,
7
+ "eval_steps_per_second": 1.196,
8
+ "total_flos": 5.485972481640161e+17,
9
+ "train_loss": 0.4824531834622566,
10
+ "train_runtime": 26326.043,
11
+ "train_samples_per_second": 0.685,
12
+ "train_steps_per_second": 0.342
13
+ }
configuration_phi3.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ Phi-3 model configuration"""
17
+
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
26
+ "microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
27
+ "microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
28
+ }
29
+
30
+
31
+ class Phi3Config(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the
36
+ [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
+ documentation from [`PretrainedConfig`] for more information.
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32064):
43
+ Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`Phi3Model`].
45
+ hidden_size (`int`, *optional*, defaults to 3072):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 8192):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
62
+ Dropout probability for mlp outputs.
63
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
64
+ The dropout ratio for the embeddings.
65
+ attention_dropout (`float`, *optional*, defaults to 0.0):
66
+ The dropout ratio after computing the attention scores.
67
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
68
+ The non-linear activation function (function or string) in the decoder.
69
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
70
+ The maximum sequence length that this model might ever be used with.
71
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
72
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
73
+ original RoPE embeddings when using long scaling.
74
+ initializer_range (`float`, *optional*, defaults to 0.02):
75
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
76
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
77
+ The epsilon value used for the RMSNorm.
78
+ use_cache (`bool`, *optional*, defaults to `True`):
79
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
80
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
81
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82
+ Whether to tie weight embeddings
83
+ rope_theta (`float`, *optional*, defaults to 10000.0):
84
+ The base period of the RoPE embeddings.
85
+ rope_scaling (`dict`, *optional*):
86
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
87
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
88
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
89
+ divided by the number of attention heads divided by 2.
90
+ bos_token_id (`int`, *optional*, defaults to 1):
91
+ The id of the "beginning-of-sequence" token.
92
+ eos_token_id (`int`, *optional*, defaults to 32000):
93
+ The id of the "end-of-sequence" token.
94
+ pad_token_id (`int`, *optional*, defaults to 32000):
95
+ The id of the padding token.
96
+ sliding_window (`int`, *optional*):
97
+ Sliding window attention window size. If `None`, no sliding window is applied.
98
+
99
+ Example:
100
+
101
+ ```python
102
+ >>> from transformers import Phi3Model, Phi3Config
103
+
104
+ >>> # Initializing a Phi-3 style configuration
105
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
106
+
107
+ >>> # Initializing a model from the configuration
108
+ >>> model = Phi3Model(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "phi3"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=32064,
120
+ hidden_size=3072,
121
+ intermediate_size=8192,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ resid_pdrop=0.0,
126
+ embd_pdrop=0.0,
127
+ attention_dropout=0.0,
128
+ hidden_act="silu",
129
+ max_position_embeddings=4096,
130
+ original_max_position_embeddings=4096,
131
+ initializer_range=0.02,
132
+ rms_norm_eps=1e-5,
133
+ use_cache=True,
134
+ tie_word_embeddings=False,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ bos_token_id=1,
138
+ eos_token_id=32000,
139
+ pad_token_id=32000,
140
+ sliding_window=None,
141
+ **kwargs,
142
+ ):
143
+ self.vocab_size = vocab_size
144
+ self.hidden_size = hidden_size
145
+ self.intermediate_size = intermediate_size
146
+ self.num_hidden_layers = num_hidden_layers
147
+ self.num_attention_heads = num_attention_heads
148
+
149
+ if num_key_value_heads is None:
150
+ num_key_value_heads = num_attention_heads
151
+
152
+ self.num_key_value_heads = num_key_value_heads
153
+ self.resid_pdrop = resid_pdrop
154
+ self.embd_pdrop = embd_pdrop
155
+ self.attention_dropout = attention_dropout
156
+ self.hidden_act = hidden_act
157
+ self.max_position_embeddings = max_position_embeddings
158
+ self.original_max_position_embeddings = original_max_position_embeddings
159
+ self.initializer_range = initializer_range
160
+ self.rms_norm_eps = rms_norm_eps
161
+ self.use_cache = use_cache
162
+ self.rope_theta = rope_theta
163
+ self.rope_scaling = rope_scaling
164
+ self._rope_scaling_adjustment()
165
+ self._rope_scaling_validation()
166
+ self.sliding_window = sliding_window
167
+
168
+ super().__init__(
169
+ bos_token_id=bos_token_id,
170
+ eos_token_id=eos_token_id,
171
+ pad_token_id=pad_token_id,
172
+ tie_word_embeddings=tie_word_embeddings,
173
+ **kwargs,
174
+ )
175
+
176
+ def _rope_scaling_adjustment(self):
177
+ """
178
+ Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
179
+ """
180
+ if self.rope_scaling is None:
181
+ return
182
+
183
+ rope_scaling_type = self.rope_scaling.get("type", None)
184
+
185
+ # For backward compatibility if previous version used "su" or "yarn"
186
+ if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
187
+ self.rope_scaling["type"] = "longrope"
188
+
189
+ def _rope_scaling_validation(self):
190
+ """
191
+ Validate the `rope_scaling` configuration.
192
+ """
193
+ if self.rope_scaling is None:
194
+ return
195
+
196
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
197
+ raise ValueError(
198
+ "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
199
+ f"got {self.rope_scaling}"
200
+ )
201
+ rope_scaling_type = self.rope_scaling.get("type", None)
202
+ rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
203
+ rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
204
+ if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
205
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
206
+ if not (
207
+ isinstance(rope_scaling_short_factor, list)
208
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
209
+ ):
210
+ raise ValueError(
211
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
212
+ )
213
+ if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
214
+ raise ValueError(
215
+ f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
216
+ )
217
+ if not (
218
+ isinstance(rope_scaling_long_factor, list)
219
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
220
+ ):
221
+ raise ValueError(
222
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
223
+ )
224
+ if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
225
+ raise ValueError(
226
+ f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
227
+ )
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.4590456783771515,
4
+ "eval_runtime": 233.2276,
5
+ "eval_samples": 558,
6
+ "eval_samples_per_second": 2.393,
7
+ "eval_steps_per_second": 1.196
8
+ }
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": [
5
+ 32000,
6
+ 32001,
7
+ 32007
8
+ ],
9
+ "pad_token_id": 32000,
10
+ "transformers_version": "4.43.3"
11
+ }
model-00001-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7d2542c0809c7e2d208b889dca2a30bb66de676de582cfb4bb9c956d989856fe
3
  size 4972489328
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab568a422e189be32ef82332bac5922fa40d18cf1acde2ed49a039938bf304be
3
  size 4972489328
model-00002-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:138c87db7f21c3f52a7499fdf9f967ceac3f2af29521ef96d11c9e863a65912d
3
  size 2669692552
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afd166e96177532d652009e1487f4abd1d47898d57be8bcdaea86e2a155cb388
3
  size 2669692552
modeling_phi3.py ADDED
@@ -0,0 +1,1563 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch Phi-3 model."""
17
+
18
+ import inspect
19
+ import math
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.cache_utils import Cache, DynamicCache
31
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
32
+ from transformers.modeling_outputs import (
33
+ BaseModelOutputWithPast,
34
+ CausalLMOutputWithPast,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from transformers.modeling_utils import PreTrainedModel
39
+ from transformers.utils import (
40
+ add_code_sample_docstrings,
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ is_flash_attn_2_available,
44
+ is_flash_attn_greater_or_equal_2_10,
45
+ logging,
46
+ replace_return_docstrings,
47
+ )
48
+ from .configuration_phi3 import Phi3Config
49
+
50
+
51
+ logger = logging.get_logger(__name__)
52
+
53
+ # Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
54
+ # if is_flash_attn_2_available():
55
+ _flash_supports_window_size = False
56
+ try:
57
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
58
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
59
+
60
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
61
+ except ImportError as error:
62
+ logger.warning(
63
+ f"`flash-attention` package not found, consider installing for better performance: {error}."
64
+ )
65
+ if not _flash_supports_window_size:
66
+ logger.warning(
67
+ "Current `flash-attention` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
68
+ )
69
+
70
+ _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-mini-4k-instruct"
71
+ _CONFIG_FOR_DOC = "Phi3Config"
72
+
73
+ PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
74
+ "microsoft/Phi-3-mini-4k-instruct",
75
+ "microsoft/Phi-3-mini-128k-instruct",
76
+ # See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
77
+ ]
78
+
79
+
80
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
81
+ class Phi3RMSNorm(nn.Module):
82
+ def __init__(self, hidden_size, eps=1e-6):
83
+ """
84
+ Phi3RMSNorm is equivalent to T5LayerNorm
85
+ """
86
+ super().__init__()
87
+ self.weight = nn.Parameter(torch.ones(hidden_size))
88
+ self.variance_epsilon = eps
89
+
90
+ def forward(self, hidden_states):
91
+ input_dtype = hidden_states.dtype
92
+ hidden_states = hidden_states.to(torch.float32)
93
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
94
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
95
+ return self.weight * hidden_states.to(input_dtype)
96
+
97
+
98
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
99
+ def _get_unpad_data(attention_mask):
100
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
101
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
102
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
103
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
104
+ return (
105
+ indices,
106
+ cu_seqlens,
107
+ max_seqlen_in_batch,
108
+ )
109
+
110
+
111
+ # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
112
+ class Phi3RotaryEmbedding(nn.Module):
113
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
114
+ super().__init__()
115
+
116
+ self.dim = dim
117
+ self.max_position_embeddings = max_position_embeddings
118
+ self.base = base
119
+ self.register_buffer("inv_freq", None, persistent=False)
120
+
121
+ @torch.no_grad()
122
+ def forward(self, x, position_ids, seq_len=None):
123
+ # x: [bs, num_attention_heads, seq_len, head_size]
124
+ if self.inv_freq is None:
125
+ self.inv_freq = 1.0 / (
126
+ self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
127
+ )
128
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
129
+ position_ids_expanded = position_ids[:, None, :].float()
130
+ # Force float32 since bfloat16 loses precision on long contexts
131
+ # See https://github.com/huggingface/transformers/pull/29285
132
+ device_type = x.device.type
133
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
134
+ with torch.autocast(device_type=device_type, enabled=False):
135
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
136
+ emb = torch.cat((freqs, freqs), dim=-1)
137
+ cos = emb.cos()
138
+ sin = emb.sin()
139
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
140
+
141
+
142
+ class Phi3LongRoPEScaledRotaryEmbedding(Phi3RotaryEmbedding):
143
+ def __init__(self, dim, config, device=None):
144
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
145
+
146
+ self.short_factor = config.rope_scaling["short_factor"]
147
+ self.long_factor = config.rope_scaling["long_factor"]
148
+ self.original_max_position_embeddings = config.original_max_position_embeddings
149
+
150
+ @torch.no_grad()
151
+ def forward(self, x, position_ids, seq_len=None):
152
+ seq_len = torch.max(position_ids) + 1
153
+ if seq_len > self.original_max_position_embeddings:
154
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
155
+ else:
156
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
157
+
158
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
159
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
160
+
161
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
162
+ position_ids_expanded = position_ids[:, None, :].float()
163
+
164
+ # Force float32 since bfloat16 loses precision on long contexts
165
+ # See https://github.com/huggingface/transformers/pull/29285
166
+ device_type = x.device.type
167
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
168
+ with torch.autocast(device_type=device_type, enabled=False):
169
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
170
+ emb = torch.cat((freqs, freqs), dim=-1)
171
+
172
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
173
+ if scale <= 1.0:
174
+ scaling_factor = 1.0
175
+ else:
176
+ scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
177
+
178
+ cos = emb.cos() * scaling_factor
179
+ sin = emb.sin() * scaling_factor
180
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
181
+
182
+
183
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
184
+ def rotate_half(x):
185
+ """Rotates half the hidden dims of the input."""
186
+ x1 = x[..., : x.shape[-1] // 2]
187
+ x2 = x[..., x.shape[-1] // 2 :]
188
+ return torch.cat((-x2, x1), dim=-1)
189
+
190
+
191
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
192
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
193
+ """Applies Rotary Position Embedding to the query and key tensors.
194
+
195
+ Args:
196
+ q (`torch.Tensor`): The query tensor.
197
+ k (`torch.Tensor`): The key tensor.
198
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
199
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
200
+ position_ids (`torch.Tensor`, *optional*):
201
+ Deprecated and unused.
202
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
203
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
204
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
205
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
206
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
207
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
208
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
209
+ Returns:
210
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
211
+ """
212
+ cos = cos.unsqueeze(unsqueeze_dim)
213
+ sin = sin.unsqueeze(unsqueeze_dim)
214
+ q_embed = (q * cos) + (rotate_half(q) * sin)
215
+ k_embed = (k * cos) + (rotate_half(k) * sin)
216
+ return q_embed, k_embed
217
+
218
+
219
+ class Phi3MLP(nn.Module):
220
+ def __init__(self, config):
221
+ super().__init__()
222
+
223
+ self.config = config
224
+ self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
225
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
226
+
227
+ self.activation_fn = ACT2FN[config.hidden_act]
228
+
229
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
230
+ up_states = self.gate_up_proj(hidden_states)
231
+
232
+ gate, up_states = up_states.chunk(2, dim=-1)
233
+ up_states = up_states * self.activation_fn(gate)
234
+
235
+ return self.down_proj(up_states)
236
+
237
+
238
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
239
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
240
+ """
241
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
242
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
243
+ """
244
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
245
+ if n_rep == 1:
246
+ return hidden_states
247
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
248
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
249
+
250
+
251
+ class Phi3Attention(nn.Module):
252
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
253
+
254
+ def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
255
+ super().__init__()
256
+ self.config = config
257
+ self.layer_idx = layer_idx
258
+ if layer_idx is None:
259
+ logger.warning_once(
260
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
261
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
262
+ "when creating this class."
263
+ )
264
+
265
+ self.attention_dropout = config.attention_dropout
266
+ self.hidden_size = config.hidden_size
267
+ self.num_heads = config.num_attention_heads
268
+ self.head_dim = self.hidden_size // self.num_heads
269
+ self.num_key_value_heads = config.num_key_value_heads
270
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
271
+ self.max_position_embeddings = config.max_position_embeddings
272
+ self.original_max_position_embeddings = config.original_max_position_embeddings
273
+ self.rope_theta = config.rope_theta
274
+ self.rope_scaling = config.rope_scaling
275
+ self.is_causal = True
276
+
277
+ if (self.head_dim * self.num_heads) != self.hidden_size:
278
+ raise ValueError(
279
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
280
+ f" and `num_heads`: {self.num_heads})."
281
+ )
282
+
283
+ op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
284
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
285
+ self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
286
+ self._init_rope()
287
+
288
+ def _init_rope(self):
289
+ if self.rope_scaling is None:
290
+ self.rotary_emb = Phi3RotaryEmbedding(
291
+ self.head_dim,
292
+ max_position_embeddings=self.max_position_embeddings,
293
+ base=self.rope_theta,
294
+ )
295
+ else:
296
+ scaling_type = self.config.rope_scaling["type"]
297
+ if scaling_type == "longrope":
298
+ self.rotary_emb = Phi3LongRoPEScaledRotaryEmbedding(self.head_dim, self.config)
299
+ else:
300
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
301
+
302
+ def forward(
303
+ self,
304
+ hidden_states: torch.Tensor,
305
+ attention_mask: Optional[torch.Tensor] = None,
306
+ position_ids: Optional[torch.LongTensor] = None,
307
+ past_key_value: Optional[Cache] = None,
308
+ output_attentions: bool = False,
309
+ use_cache: bool = False,
310
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
311
+ logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.")
312
+
313
+ bsz, q_len, _ = hidden_states.size()
314
+
315
+ qkv = self.qkv_proj(hidden_states)
316
+ query_pos = self.num_heads * self.head_dim
317
+ query_states = qkv[..., :query_pos]
318
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
319
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
320
+
321
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
322
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
323
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
324
+
325
+ kv_seq_len = key_states.shape[-2]
326
+ if past_key_value is not None:
327
+ if self.layer_idx is None:
328
+ raise ValueError(
329
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
330
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
331
+ "with a layer index."
332
+ )
333
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
334
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
335
+
336
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
337
+
338
+ if past_key_value is not None:
339
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
340
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
341
+
342
+ # repeat k/v heads if n_kv_heads < n_heads
343
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
344
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
345
+
346
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
347
+
348
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
349
+ raise ValueError(
350
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
351
+ f" {attn_weights.size()}"
352
+ )
353
+
354
+ if attention_mask is not None:
355
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
356
+ raise ValueError(
357
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
358
+ )
359
+ attn_weights = attn_weights + attention_mask
360
+
361
+ # upcast attention to fp32
362
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
363
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
364
+
365
+ attn_output = torch.matmul(attn_weights, value_states)
366
+
367
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
368
+ raise ValueError(
369
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
370
+ f" {attn_output.size()}"
371
+ )
372
+
373
+ attn_output = attn_output.transpose(1, 2).contiguous()
374
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
375
+
376
+ attn_output = self.o_proj(attn_output)
377
+
378
+ if not output_attentions:
379
+ attn_weights = None
380
+
381
+ return attn_output, attn_weights, past_key_value
382
+
383
+
384
+ class Phi3FlashAttention2(Phi3Attention):
385
+ """
386
+ Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
387
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
388
+ flash attention and deal with padding tokens in case the input contains any of them.
389
+ """
390
+
391
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
392
+ def __init__(self, *args, **kwargs):
393
+ super().__init__(*args, **kwargs)
394
+
395
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
396
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
397
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
398
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
399
+
400
+ def forward(
401
+ self,
402
+ hidden_states: torch.Tensor,
403
+ attention_mask: Optional[torch.LongTensor] = None,
404
+ position_ids: Optional[torch.LongTensor] = None,
405
+ past_key_value: Optional[Cache] = None,
406
+ output_attentions: bool = False,
407
+ use_cache: bool = False,
408
+ **kwargs,
409
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
410
+ # Phi3FlashAttention2 attention does not support output_attentions
411
+
412
+ if not _flash_supports_window_size:
413
+ logger.warning_once(
414
+ "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
415
+ )
416
+ raise ValueError("The current flash attention version does not support sliding window attention.")
417
+
418
+ output_attentions = False
419
+
420
+ if "padding_mask" in kwargs:
421
+ warnings.warn(
422
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
423
+ )
424
+
425
+ # overwrite attention_mask with padding_mask
426
+ attention_mask = kwargs.pop("padding_mask")
427
+
428
+ bsz, q_len, _ = hidden_states.size()
429
+
430
+ qkv = self.qkv_proj(hidden_states)
431
+ query_pos = self.num_heads * self.head_dim
432
+ query_states = qkv[..., :query_pos]
433
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
434
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
435
+
436
+ # Flash attention requires the input to have the shape
437
+ # batch_size x seq_length x head_dim x hidden_dim
438
+ # therefore we just need to keep the original shape
439
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
440
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
441
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
442
+
443
+ kv_seq_len = key_states.shape[-2]
444
+ if past_key_value is not None:
445
+ if self.layer_idx is None:
446
+ raise ValueError(
447
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
448
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
449
+ "with a layer index."
450
+ )
451
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
452
+
453
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
454
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
455
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
456
+
457
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
458
+
459
+ use_sliding_windows = (
460
+ _flash_supports_window_size
461
+ and getattr(self.config, "sliding_window", None) is not None
462
+ and kv_seq_len > self.config.sliding_window
463
+ )
464
+
465
+ if past_key_value is not None:
466
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
467
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
468
+ if (
469
+ getattr(self.config, "sliding_window", None) is not None
470
+ and kv_seq_len > self.config.sliding_window
471
+ and cache_has_contents
472
+ ):
473
+ slicing_tokens = 1 - self.config.sliding_window
474
+
475
+ past_key = past_key_value[self.layer_idx][0]
476
+ past_value = past_key_value[self.layer_idx][1]
477
+
478
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
479
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
480
+
481
+ if past_key.shape[-2] != self.config.sliding_window - 1:
482
+ raise ValueError(
483
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
484
+ f" {past_key.shape}"
485
+ )
486
+
487
+ if attention_mask is not None:
488
+ attention_mask = attention_mask[:, slicing_tokens:]
489
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
490
+
491
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
492
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
493
+
494
+ # repeat k/v heads if n_kv_heads < n_heads
495
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
496
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
497
+
498
+ attn_dropout = self.attention_dropout if self.training else 0.0
499
+
500
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
501
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
502
+ # cast them back in the correct dtype just to be sure everything works as expected.
503
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
504
+ # in fp32.
505
+
506
+ if query_states.dtype == torch.float32:
507
+ if torch.is_autocast_enabled():
508
+ target_dtype = torch.get_autocast_gpu_dtype()
509
+ # Handle the case where the model is quantized
510
+ elif hasattr(self.config, "_pre_quantization_dtype"):
511
+ target_dtype = self.config._pre_quantization_dtype
512
+ else:
513
+ target_dtype = self.qkv_proj.weight.dtype
514
+
515
+ logger.warning_once(
516
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
517
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
518
+ f" {target_dtype}."
519
+ )
520
+
521
+ query_states = query_states.to(target_dtype)
522
+ key_states = key_states.to(target_dtype)
523
+ value_states = value_states.to(target_dtype)
524
+
525
+ # Reashape to the expected shape for Flash Attention
526
+ query_states = query_states.transpose(1, 2)
527
+ key_states = key_states.transpose(1, 2)
528
+ value_states = value_states.transpose(1, 2)
529
+
530
+ attn_output = self._flash_attention_forward(
531
+ query_states,
532
+ key_states,
533
+ value_states,
534
+ attention_mask,
535
+ q_len,
536
+ dropout=attn_dropout,
537
+ use_sliding_windows=use_sliding_windows,
538
+ )
539
+
540
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
541
+ attn_output = self.o_proj(attn_output)
542
+
543
+ if not output_attentions:
544
+ attn_weights = None
545
+
546
+ return attn_output, attn_weights, past_key_value
547
+
548
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
549
+ def _flash_attention_forward(
550
+ self,
551
+ query_states,
552
+ key_states,
553
+ value_states,
554
+ attention_mask,
555
+ query_length,
556
+ dropout=0.0,
557
+ softmax_scale=None,
558
+ use_sliding_windows=False,
559
+ ):
560
+ """
561
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
562
+ first unpad the input, then computes the attention scores and pad the final attention scores.
563
+
564
+ Args:
565
+ query_states (`torch.Tensor`):
566
+ Input query states to be passed to Flash Attention API
567
+ key_states (`torch.Tensor`):
568
+ Input key states to be passed to Flash Attention API
569
+ value_states (`torch.Tensor`):
570
+ Input value states to be passed to Flash Attention API
571
+ attention_mask (`torch.Tensor`):
572
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
573
+ position of padding tokens and 1 for the position of non-padding tokens.
574
+ dropout (`float`):
575
+ Attention dropout
576
+ softmax_scale (`float`, *optional*):
577
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
578
+ use_sliding_windows (`bool`, *optional*):
579
+ Whether to activate sliding window attention.
580
+ """
581
+ if not self._flash_attn_uses_top_left_mask:
582
+ causal = self.is_causal
583
+ else:
584
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
585
+ causal = self.is_causal and query_length != 1
586
+
587
+ # Contains at least one padding token in the sequence
588
+ if attention_mask is not None:
589
+ batch_size = query_states.shape[0]
590
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
591
+ query_states, key_states, value_states, attention_mask, query_length
592
+ )
593
+
594
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
595
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
596
+
597
+ if not use_sliding_windows:
598
+ attn_output_unpad = flash_attn_varlen_func(
599
+ query_states,
600
+ key_states,
601
+ value_states,
602
+ cu_seqlens_q=cu_seqlens_q,
603
+ cu_seqlens_k=cu_seqlens_k,
604
+ max_seqlen_q=max_seqlen_in_batch_q,
605
+ max_seqlen_k=max_seqlen_in_batch_k,
606
+ dropout_p=dropout,
607
+ softmax_scale=softmax_scale,
608
+ causal=causal,
609
+ )
610
+ else:
611
+ attn_output_unpad = flash_attn_varlen_func(
612
+ query_states,
613
+ key_states,
614
+ value_states,
615
+ cu_seqlens_q=cu_seqlens_q,
616
+ cu_seqlens_k=cu_seqlens_k,
617
+ max_seqlen_q=max_seqlen_in_batch_q,
618
+ max_seqlen_k=max_seqlen_in_batch_k,
619
+ dropout_p=dropout,
620
+ softmax_scale=softmax_scale,
621
+ causal=causal,
622
+ window_size=(self.config.sliding_window, self.config.sliding_window),
623
+ )
624
+
625
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
626
+ else:
627
+ if not use_sliding_windows:
628
+ attn_output = flash_attn_func(
629
+ query_states,
630
+ key_states,
631
+ value_states,
632
+ dropout,
633
+ softmax_scale=softmax_scale,
634
+ causal=causal,
635
+ )
636
+ else:
637
+ attn_output = flash_attn_func(
638
+ query_states,
639
+ key_states,
640
+ value_states,
641
+ dropout,
642
+ softmax_scale=softmax_scale,
643
+ causal=causal,
644
+ window_size=(self.config.sliding_window, self.config.sliding_window),
645
+ )
646
+
647
+ return attn_output
648
+
649
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
650
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
651
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
652
+
653
+ # On the first iteration we need to properly re-create the padding mask
654
+ # by slicing it on the proper place
655
+ if kv_seq_len != attention_mask.shape[-1]:
656
+ attention_mask_num_tokens = attention_mask.shape[-1]
657
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
658
+
659
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
660
+
661
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
662
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
663
+
664
+ if query_length == kv_seq_len:
665
+ query_layer = index_first_axis(
666
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
667
+ )
668
+ cu_seqlens_q = cu_seqlens_k
669
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
670
+ indices_q = indices_k
671
+ elif query_length == 1:
672
+ max_seqlen_in_batch_q = 1
673
+ cu_seqlens_q = torch.arange(
674
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
675
+ ) # There is a memcpy here, that is very bad.
676
+ indices_q = cu_seqlens_q[:-1]
677
+ query_layer = query_layer.squeeze(1)
678
+ else:
679
+ # The -q_len: slice assumes left padding.
680
+ attention_mask = attention_mask[:, -query_length:]
681
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
682
+
683
+ return (
684
+ query_layer,
685
+ key_layer,
686
+ value_layer,
687
+ indices_q,
688
+ (cu_seqlens_q, cu_seqlens_k),
689
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
690
+ )
691
+
692
+
693
+ # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
694
+ # TODO @Arthur no longer copied from LLama after static cache
695
+ class Phi3SdpaAttention(Phi3Attention):
696
+ """
697
+ Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
698
+ `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
699
+ SDPA API.
700
+ """
701
+
702
+ # Adapted from Phi3Attention.forward
703
+ def forward(
704
+ self,
705
+ hidden_states: torch.Tensor,
706
+ attention_mask: Optional[torch.Tensor] = None,
707
+ position_ids: Optional[torch.LongTensor] = None,
708
+ past_key_value: Optional[Cache] = None,
709
+ output_attentions: bool = False,
710
+ use_cache: bool = False,
711
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
712
+ if output_attentions:
713
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
714
+ logger.warning_once(
715
+ "Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
716
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
717
+ )
718
+ return super().forward(
719
+ hidden_states=hidden_states,
720
+ attention_mask=attention_mask,
721
+ position_ids=position_ids,
722
+ past_key_value=past_key_value,
723
+ output_attentions=output_attentions,
724
+ use_cache=use_cache,
725
+ )
726
+
727
+ bsz, q_len, _ = hidden_states.size()
728
+
729
+ qkv = self.qkv_proj(hidden_states)
730
+ query_pos = self.num_heads * self.head_dim
731
+ query_states = qkv[..., :query_pos]
732
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
733
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
734
+
735
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
736
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
737
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
738
+
739
+ kv_seq_len = key_states.shape[-2]
740
+ if past_key_value is not None:
741
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
742
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
743
+
744
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
745
+
746
+ if past_key_value is not None:
747
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
748
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
749
+
750
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
751
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
752
+
753
+ if attention_mask is not None:
754
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
755
+ raise ValueError(
756
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
757
+ )
758
+
759
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
760
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
761
+ if query_states.device.type == "cuda" and attention_mask is not None:
762
+ query_states = query_states.contiguous()
763
+ key_states = key_states.contiguous()
764
+ value_states = value_states.contiguous()
765
+
766
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
767
+ query_states,
768
+ key_states,
769
+ value_states,
770
+ attn_mask=attention_mask,
771
+ dropout_p=self.attention_dropout if self.training else 0.0,
772
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
773
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
774
+ )
775
+
776
+ attn_output = attn_output.transpose(1, 2).contiguous()
777
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
778
+
779
+ attn_output = self.o_proj(attn_output)
780
+
781
+ return attn_output, None, past_key_value
782
+
783
+
784
+ PHI3_ATTENTION_CLASSES = {
785
+ "eager": Phi3Attention,
786
+ "flash_attention_2": Phi3FlashAttention2,
787
+ "sdpa": Phi3SdpaAttention,
788
+ }
789
+
790
+
791
+ class Phi3DecoderLayer(nn.Module):
792
+ def __init__(self, config: Phi3Config, layer_idx: int):
793
+ super().__init__()
794
+
795
+ self.config = config
796
+ self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
797
+
798
+ self.mlp = Phi3MLP(config)
799
+ self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
800
+
801
+ self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
802
+ self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
803
+ self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
804
+
805
+ def forward(
806
+ self,
807
+ hidden_states: torch.Tensor,
808
+ attention_mask: Optional[torch.Tensor] = None,
809
+ position_ids: Optional[torch.LongTensor] = None,
810
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
811
+ output_attentions: Optional[bool] = False,
812
+ use_cache: Optional[bool] = False,
813
+ **kwargs,
814
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
815
+ if "padding_mask" in kwargs:
816
+ warnings.warn(
817
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
818
+ )
819
+ """
820
+ Args:
821
+ hidden_states (`torch.FloatTensor`):
822
+ input to the layer of shape `(batch, seq_len, embed_dim)`
823
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
824
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
825
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
826
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
827
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
828
+ output_attentions (`bool`, *optional*):
829
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
830
+ returned tensors for more detail.
831
+ use_cache (`bool`, *optional*):
832
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
833
+ (see `past_key_values`).
834
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
835
+ """
836
+
837
+ residual = hidden_states
838
+
839
+ hidden_states = self.input_layernorm(hidden_states)
840
+
841
+ # Self Attention
842
+ attn_outputs, self_attn_weights, present_key_value = self.self_attn(
843
+ hidden_states=hidden_states,
844
+ attention_mask=attention_mask,
845
+ position_ids=position_ids,
846
+ past_key_value=past_key_value,
847
+ output_attentions=output_attentions,
848
+ use_cache=use_cache,
849
+ )
850
+
851
+ hidden_states = residual + self.resid_attn_dropout(attn_outputs)
852
+
853
+ residual = hidden_states
854
+ hidden_states = self.post_attention_layernorm(hidden_states)
855
+ hidden_states = self.mlp(hidden_states)
856
+ hidden_states = residual + self.resid_mlp_dropout(hidden_states)
857
+
858
+ outputs = (hidden_states,)
859
+
860
+ if output_attentions:
861
+ outputs += (self_attn_weights,)
862
+
863
+ if use_cache:
864
+ outputs += (present_key_value,)
865
+
866
+ return outputs
867
+
868
+
869
+ PHI3_START_DOCSTRING = r"""
870
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
871
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
872
+ etc.)
873
+
874
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
875
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
876
+ and behavior.
877
+
878
+ Parameters:
879
+ config ([`Phi3Config`]):
880
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
881
+ load the weights associated with the model, only the configuration. Check out the
882
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
883
+ """
884
+
885
+
886
+ @add_start_docstrings(
887
+ "The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
888
+ PHI3_START_DOCSTRING,
889
+ )
890
+ class Phi3PreTrainedModel(PreTrainedModel):
891
+ config_class = Phi3Config
892
+ base_model_prefix = "model"
893
+ supports_gradient_checkpointing = True
894
+ _no_split_modules = ["Phi3DecoderLayer"]
895
+ _skip_keys_device_placement = "past_key_values"
896
+ _supports_flash_attn_2 = True
897
+ _supports_sdpa = False
898
+ _supports_cache_class = True
899
+
900
+ _version = "0.0.5"
901
+
902
+ def _init_weights(self, module):
903
+ std = self.config.initializer_range
904
+ if isinstance(module, nn.Linear):
905
+ module.weight.data.normal_(mean=0.0, std=std)
906
+ if module.bias is not None:
907
+ module.bias.data.zero_()
908
+ elif isinstance(module, nn.Embedding):
909
+ module.weight.data.normal_(mean=0.0, std=std)
910
+ if module.padding_idx is not None:
911
+ module.weight.data[module.padding_idx].zero_()
912
+
913
+
914
+ PHI3_INPUTS_DOCSTRING = r"""
915
+ Args:
916
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
917
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
918
+ it.
919
+
920
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
921
+ [`PreTrainedTokenizer.__call__`] for details.
922
+
923
+ [What are input IDs?](../glossary#input-ids)
924
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
925
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
926
+
927
+ - 1 for tokens that are **not masked**,
928
+ - 0 for tokens that are **masked**.
929
+
930
+ [What are attention masks?](../glossary#attention-mask)
931
+
932
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
933
+ [`PreTrainedTokenizer.__call__`] for details.
934
+
935
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
936
+ `past_key_values`).
937
+
938
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
939
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
940
+ information on the default strategy.
941
+
942
+ - 1 indicates the head is **not masked**,
943
+ - 0 indicates the head is **masked**.
944
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
945
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
946
+ config.n_positions - 1]`.
947
+
948
+ [What are position IDs?](../glossary#position-ids)
949
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
950
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
951
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
952
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
953
+
954
+ Two formats are allowed:
955
+ - a [`~cache_utils.Cache`] instance;
956
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
957
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
958
+ cache format.
959
+
960
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
961
+ legacy cache format will be returned.
962
+
963
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
964
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
965
+ of shape `(batch_size, sequence_length)`.
966
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
967
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
968
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
969
+ model's internal embedding lookup matrix.
970
+ use_cache (`bool`, *optional*):
971
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
972
+ `past_key_values`).
973
+ output_attentions (`bool`, *optional*):
974
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
975
+ tensors for more detail.
976
+ output_hidden_states (`bool`, *optional*):
977
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
978
+ more detail.
979
+ return_dict (`bool`, *optional*):
980
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
981
+ """
982
+
983
+
984
+ @add_start_docstrings(
985
+ "The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
986
+ PHI3_START_DOCSTRING,
987
+ )
988
+ class Phi3Model(Phi3PreTrainedModel):
989
+ """
990
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
991
+
992
+ Args:
993
+ config: Phi3Config
994
+ """
995
+
996
+ def __init__(self, config: Phi3Config):
997
+ super().__init__(config)
998
+ self.padding_idx = config.pad_token_id
999
+ self.vocab_size = config.vocab_size
1000
+
1001
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1002
+ self.embed_dropout = nn.Dropout(config.embd_pdrop)
1003
+ self.layers = nn.ModuleList(
1004
+ [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1005
+ )
1006
+ self._attn_implementation = config._attn_implementation
1007
+ self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1008
+
1009
+ self.gradient_checkpointing = False
1010
+ # Initialize weights and apply final processing
1011
+ self.post_init()
1012
+
1013
+ def get_input_embeddings(self):
1014
+ return self.embed_tokens
1015
+
1016
+ def set_input_embeddings(self, value):
1017
+ self.embed_tokens = value
1018
+
1019
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1020
+ def forward(
1021
+ self,
1022
+ input_ids: torch.LongTensor = None,
1023
+ attention_mask: Optional[torch.Tensor] = None,
1024
+ position_ids: Optional[torch.LongTensor] = None,
1025
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1026
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1027
+ use_cache: Optional[bool] = None,
1028
+ output_attentions: Optional[bool] = None,
1029
+ output_hidden_states: Optional[bool] = None,
1030
+ return_dict: Optional[bool] = None,
1031
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1032
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1033
+ output_hidden_states = (
1034
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1035
+ )
1036
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1037
+
1038
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1039
+
1040
+ # retrieve input_ids and inputs_embeds
1041
+ if input_ids is not None and inputs_embeds is not None:
1042
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1043
+ elif input_ids is not None:
1044
+ batch_size, seq_length = input_ids.shape[:2]
1045
+ elif inputs_embeds is not None:
1046
+ batch_size, seq_length = inputs_embeds.shape[:2]
1047
+ else:
1048
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1049
+
1050
+ past_key_values_length = 0
1051
+
1052
+ if self.gradient_checkpointing and self.training:
1053
+ if use_cache:
1054
+ logger.warning_once(
1055
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1056
+ )
1057
+ use_cache = False
1058
+
1059
+ if use_cache:
1060
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1061
+ if use_legacy_cache:
1062
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1063
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1064
+
1065
+ if position_ids is None:
1066
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1067
+ position_ids = torch.arange(
1068
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1069
+ )
1070
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1071
+ else:
1072
+ position_ids = position_ids.view(-1, seq_length).long()
1073
+
1074
+ if inputs_embeds is None:
1075
+ inputs_embeds = self.embed_tokens(input_ids)
1076
+
1077
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1078
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1079
+ if is_padding_right:
1080
+ raise ValueError(
1081
+ "You are attempting to perform batched generation with padding_side='right'"
1082
+ " this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to "
1083
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1084
+ )
1085
+
1086
+ if self._attn_implementation == "flash_attention_2":
1087
+ # 2d mask is passed through the layers
1088
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1089
+ else:
1090
+ # 4d mask is passed through the layers
1091
+ attention_mask = _prepare_4d_causal_attention_mask(
1092
+ attention_mask,
1093
+ (batch_size, seq_length),
1094
+ inputs_embeds,
1095
+ past_key_values_length,
1096
+ sliding_window=self.config.sliding_window,
1097
+ )
1098
+
1099
+ hidden_states = inputs_embeds
1100
+
1101
+ # decoder layers
1102
+ all_hidden_states = () if output_hidden_states else None
1103
+ all_self_attns = () if output_attentions else None
1104
+ next_decoder_cache = None
1105
+
1106
+ for decoder_layer in self.layers:
1107
+ if output_hidden_states:
1108
+ all_hidden_states += (hidden_states,)
1109
+
1110
+ if self.gradient_checkpointing and self.training:
1111
+ layer_outputs = self._gradient_checkpointing_func(
1112
+ decoder_layer.__call__,
1113
+ hidden_states,
1114
+ attention_mask,
1115
+ position_ids,
1116
+ past_key_values,
1117
+ output_attentions,
1118
+ use_cache,
1119
+ )
1120
+ else:
1121
+ layer_outputs = decoder_layer(
1122
+ hidden_states,
1123
+ attention_mask=attention_mask,
1124
+ position_ids=position_ids,
1125
+ past_key_value=past_key_values,
1126
+ output_attentions=output_attentions,
1127
+ use_cache=use_cache,
1128
+ )
1129
+
1130
+ hidden_states = layer_outputs[0]
1131
+
1132
+ if use_cache:
1133
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1134
+
1135
+ if output_attentions:
1136
+ all_self_attns += (layer_outputs[1],)
1137
+
1138
+ hidden_states = self.norm(hidden_states)
1139
+
1140
+ # add hidden states from the last decoder layer
1141
+ if output_hidden_states:
1142
+ all_hidden_states += (hidden_states,)
1143
+
1144
+ next_cache = None
1145
+ if use_cache:
1146
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1147
+ if not return_dict:
1148
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1149
+ return BaseModelOutputWithPast(
1150
+ last_hidden_state=hidden_states,
1151
+ past_key_values=next_cache,
1152
+ hidden_states=all_hidden_states,
1153
+ attentions=all_self_attns,
1154
+ )
1155
+
1156
+
1157
+ class Phi3ForCausalLM(Phi3PreTrainedModel):
1158
+ _tied_weights_keys = ["lm_head.weight"]
1159
+
1160
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
1161
+ def __init__(self, config):
1162
+ super().__init__(config)
1163
+ self.model = Phi3Model(config)
1164
+ self.vocab_size = config.vocab_size
1165
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1166
+
1167
+ # Initialize weights and apply final processing
1168
+ self.post_init()
1169
+
1170
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
1171
+ def get_input_embeddings(self):
1172
+ return self.model.embed_tokens
1173
+
1174
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
1175
+ def set_input_embeddings(self, value):
1176
+ self.model.embed_tokens = value
1177
+
1178
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
1179
+ def get_output_embeddings(self):
1180
+ return self.lm_head
1181
+
1182
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
1183
+ def set_output_embeddings(self, new_embeddings):
1184
+ self.lm_head = new_embeddings
1185
+
1186
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
1187
+ def set_decoder(self, decoder):
1188
+ self.model = decoder
1189
+
1190
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
1191
+ def get_decoder(self):
1192
+ return self.model
1193
+
1194
+ # Ignore copy
1195
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1196
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1197
+ def forward(
1198
+ self,
1199
+ input_ids: torch.LongTensor = None,
1200
+ attention_mask: Optional[torch.Tensor] = None,
1201
+ position_ids: Optional[torch.LongTensor] = None,
1202
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1203
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1204
+ labels: Optional[torch.LongTensor] = None,
1205
+ use_cache: Optional[bool] = None,
1206
+ output_attentions: Optional[bool] = None,
1207
+ output_hidden_states: Optional[bool] = None,
1208
+ return_dict: Optional[bool] = None,
1209
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1210
+ r"""
1211
+ Args:
1212
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1213
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1214
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1215
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1216
+
1217
+ Returns:
1218
+
1219
+ Example:
1220
+
1221
+ ```python
1222
+ >>> from transformers import AutoTokenizer, Phi3ForCausalLM
1223
+
1224
+ >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1225
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1226
+
1227
+ >>> prompt = "This is an example script ."
1228
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1229
+
1230
+ >>> # Generate
1231
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1232
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1233
+ 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
1234
+ ```"""
1235
+
1236
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1237
+ output_hidden_states = (
1238
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1239
+ )
1240
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1241
+
1242
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1243
+ outputs = self.model(
1244
+ input_ids=input_ids,
1245
+ attention_mask=attention_mask,
1246
+ position_ids=position_ids,
1247
+ past_key_values=past_key_values,
1248
+ inputs_embeds=inputs_embeds,
1249
+ use_cache=use_cache,
1250
+ output_attentions=output_attentions,
1251
+ output_hidden_states=output_hidden_states,
1252
+ return_dict=return_dict,
1253
+ )
1254
+
1255
+ hidden_states = outputs[0]
1256
+ logits = self.lm_head(hidden_states)
1257
+ logits = logits.float()
1258
+
1259
+ loss = None
1260
+ if labels is not None:
1261
+ # Shift so that tokens < n predict n
1262
+ shift_logits = logits[..., :-1, :].contiguous()
1263
+ shift_labels = labels[..., 1:].contiguous()
1264
+ # Flatten the tokens
1265
+ loss_fct = CrossEntropyLoss()
1266
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1267
+ shift_labels = shift_labels.view(-1)
1268
+ # Enable model parallelism
1269
+ shift_labels = shift_labels.to(shift_logits.device)
1270
+ loss = loss_fct(shift_logits, shift_labels)
1271
+
1272
+ if not return_dict:
1273
+ output = (logits,) + outputs[1:]
1274
+ return (loss,) + output if loss is not None else output
1275
+
1276
+ return CausalLMOutputWithPast(
1277
+ loss=loss,
1278
+ logits=logits,
1279
+ past_key_values=outputs.past_key_values,
1280
+ hidden_states=outputs.hidden_states,
1281
+ attentions=outputs.attentions,
1282
+ )
1283
+
1284
+ # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
1285
+ def prepare_inputs_for_generation(
1286
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1287
+ ):
1288
+ if past_key_values is not None:
1289
+ if isinstance(past_key_values, Cache):
1290
+ cache_length = past_key_values.get_seq_length()
1291
+ past_length = past_key_values.seen_tokens
1292
+ max_cache_length = past_key_values.get_max_length()
1293
+ else:
1294
+ cache_length = past_length = past_key_values[0][0].shape[2]
1295
+ max_cache_length = None
1296
+
1297
+ # Keep only the unprocessed tokens:
1298
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1299
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1300
+ # input)
1301
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1302
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1303
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1304
+ # input_ids based on the past_length.
1305
+ elif past_length < input_ids.shape[1]:
1306
+ input_ids = input_ids[:, past_length:]
1307
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1308
+
1309
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1310
+ if (
1311
+ max_cache_length is not None
1312
+ and attention_mask is not None
1313
+ and cache_length + input_ids.shape[1] > max_cache_length
1314
+ ):
1315
+ attention_mask = attention_mask[:, -max_cache_length:]
1316
+
1317
+ position_ids = kwargs.get("position_ids", None)
1318
+ if attention_mask is not None and position_ids is None:
1319
+ # create position_ids on the fly for batch generation
1320
+ position_ids = attention_mask.long().cumsum(-1) - 1
1321
+ position_ids.masked_fill_(attention_mask == 0, 1)
1322
+ if past_key_values:
1323
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1324
+
1325
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1326
+ if inputs_embeds is not None and past_key_values is None:
1327
+ model_inputs = {"inputs_embeds": inputs_embeds}
1328
+ else:
1329
+ model_inputs = {"input_ids": input_ids}
1330
+
1331
+ model_inputs.update(
1332
+ {
1333
+ "position_ids": position_ids,
1334
+ "past_key_values": past_key_values,
1335
+ "use_cache": kwargs.get("use_cache"),
1336
+ "attention_mask": attention_mask,
1337
+ }
1338
+ )
1339
+ return model_inputs
1340
+
1341
+ @staticmethod
1342
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1343
+ def _reorder_cache(past_key_values, beam_idx):
1344
+ reordered_past = ()
1345
+ for layer_past in past_key_values:
1346
+ reordered_past += (
1347
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1348
+ )
1349
+ return reordered_past
1350
+
1351
+
1352
+ @add_start_docstrings(
1353
+ """
1354
+ The [`Phi3Model`] with a sequence classification head on top (linear layer).
1355
+
1356
+ [`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1357
+ (e.g. GPT-2) do.
1358
+
1359
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1360
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1361
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1362
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1363
+ each row of the batch).
1364
+ """,
1365
+ PHI3_START_DOCSTRING,
1366
+ )
1367
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
1368
+ class Phi3ForSequenceClassification(Phi3PreTrainedModel):
1369
+ def __init__(self, config):
1370
+ super().__init__(config)
1371
+ self.num_labels = config.num_labels
1372
+ self.model = Phi3Model(config)
1373
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1374
+
1375
+ # Initialize weights and apply final processing
1376
+ self.post_init()
1377
+
1378
+ def get_input_embeddings(self):
1379
+ return self.model.embed_tokens
1380
+
1381
+ def set_input_embeddings(self, value):
1382
+ self.model.embed_tokens = value
1383
+
1384
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1385
+ def forward(
1386
+ self,
1387
+ input_ids: torch.LongTensor = None,
1388
+ attention_mask: Optional[torch.Tensor] = None,
1389
+ position_ids: Optional[torch.LongTensor] = None,
1390
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1391
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1392
+ labels: Optional[torch.LongTensor] = None,
1393
+ use_cache: Optional[bool] = None,
1394
+ output_attentions: Optional[bool] = None,
1395
+ output_hidden_states: Optional[bool] = None,
1396
+ return_dict: Optional[bool] = None,
1397
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1398
+ r"""
1399
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1400
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1401
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1402
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1403
+ """
1404
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1405
+
1406
+ model_outputs = self.model(
1407
+ input_ids,
1408
+ attention_mask=attention_mask,
1409
+ position_ids=position_ids,
1410
+ past_key_values=past_key_values,
1411
+ inputs_embeds=inputs_embeds,
1412
+ use_cache=use_cache,
1413
+ output_attentions=output_attentions,
1414
+ output_hidden_states=output_hidden_states,
1415
+ return_dict=return_dict,
1416
+ )
1417
+ hidden_states = model_outputs[0]
1418
+ logits = self.score(hidden_states)
1419
+
1420
+ if input_ids is not None:
1421
+ batch_size = input_ids.shape[0]
1422
+ else:
1423
+ batch_size = inputs_embeds.shape[0]
1424
+
1425
+ if self.config.pad_token_id is None and batch_size != 1:
1426
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1427
+ if self.config.pad_token_id is None:
1428
+ sequence_lengths = -1
1429
+ else:
1430
+ if input_ids is not None:
1431
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1432
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1433
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1434
+ sequence_lengths = sequence_lengths.to(logits.device)
1435
+ else:
1436
+ sequence_lengths = -1
1437
+
1438
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1439
+
1440
+ loss = None
1441
+ if labels is not None:
1442
+ labels = labels.to(logits.device)
1443
+ if self.config.problem_type is None:
1444
+ if self.num_labels == 1:
1445
+ self.config.problem_type = "regression"
1446
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1447
+ self.config.problem_type = "single_label_classification"
1448
+ else:
1449
+ self.config.problem_type = "multi_label_classification"
1450
+
1451
+ if self.config.problem_type == "regression":
1452
+ loss_fct = MSELoss()
1453
+ if self.num_labels == 1:
1454
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1455
+ else:
1456
+ loss = loss_fct(pooled_logits, labels)
1457
+ elif self.config.problem_type == "single_label_classification":
1458
+ loss_fct = CrossEntropyLoss()
1459
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1460
+ elif self.config.problem_type == "multi_label_classification":
1461
+ loss_fct = BCEWithLogitsLoss()
1462
+ loss = loss_fct(pooled_logits, labels)
1463
+ if not return_dict:
1464
+ output = (pooled_logits,) + model_outputs[1:]
1465
+ return ((loss,) + output) if loss is not None else output
1466
+
1467
+ return SequenceClassifierOutputWithPast(
1468
+ loss=loss,
1469
+ logits=pooled_logits,
1470
+ past_key_values=model_outputs.past_key_values,
1471
+ hidden_states=model_outputs.hidden_states,
1472
+ attentions=model_outputs.attentions,
1473
+ )
1474
+
1475
+
1476
+ @add_start_docstrings(
1477
+ """
1478
+ [`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1479
+ Named-Entity-Recognition (NER) tasks.
1480
+ """,
1481
+ PHI3_START_DOCSTRING,
1482
+ )
1483
+ # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
1484
+ class Phi3ForTokenClassification(Phi3PreTrainedModel):
1485
+ def __init__(self, config: Phi3Config):
1486
+ super().__init__(config)
1487
+ self.num_labels = config.num_labels
1488
+
1489
+ self.model = Phi3Model(config)
1490
+ if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
1491
+ classifier_dropout = config.classifier_dropout
1492
+ elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
1493
+ classifier_dropout = config.hidden_dropout
1494
+ else:
1495
+ classifier_dropout = 0.1
1496
+ self.dropout = nn.Dropout(classifier_dropout)
1497
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1498
+
1499
+ # Initialize weights and apply final processing
1500
+ self.post_init()
1501
+
1502
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1503
+ @add_code_sample_docstrings(
1504
+ checkpoint=_CHECKPOINT_FOR_DOC,
1505
+ output_type=TokenClassifierOutput,
1506
+ config_class=_CONFIG_FOR_DOC,
1507
+ )
1508
+ def forward(
1509
+ self,
1510
+ input_ids: Optional[torch.LongTensor] = None,
1511
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1512
+ attention_mask: Optional[torch.Tensor] = None,
1513
+ inputs_embeds: Optional[torch.Tensor] = None,
1514
+ labels: Optional[torch.Tensor] = None,
1515
+ use_cache: Optional[bool] = None,
1516
+ output_attentions: Optional[bool] = None,
1517
+ output_hidden_states: Optional[bool] = None,
1518
+ return_dict: Optional[bool] = None,
1519
+ **deprecated_arguments,
1520
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1521
+ r"""
1522
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1523
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1524
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1525
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1526
+ """
1527
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1528
+
1529
+ model_outputs = self.model(
1530
+ input_ids,
1531
+ past_key_values=past_key_values,
1532
+ attention_mask=attention_mask,
1533
+ inputs_embeds=inputs_embeds,
1534
+ use_cache=use_cache,
1535
+ output_attentions=output_attentions,
1536
+ output_hidden_states=output_hidden_states,
1537
+ return_dict=return_dict,
1538
+ )
1539
+
1540
+ hidden_states = model_outputs[0]
1541
+ hidden_states = self.dropout(hidden_states)
1542
+ logits = self.classifier(hidden_states)
1543
+
1544
+ loss = None
1545
+ if labels is not None:
1546
+ # move labels to correct device to enable model parallelism
1547
+ labels = labels.to(logits.device)
1548
+ batch_size, seq_length = labels.shape
1549
+ loss_fct = CrossEntropyLoss()
1550
+ loss = loss_fct(
1551
+ logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
1552
+ )
1553
+
1554
+ if not return_dict:
1555
+ output = (logits,) + model_outputs[2:]
1556
+ return ((loss,) + output) if loss is not None else output
1557
+
1558
+ return TokenClassifierOutput(
1559
+ loss=loss,
1560
+ logits=logits,
1561
+ hidden_states=model_outputs.hidden_states,
1562
+ attentions=model_outputs.attentions,
1563
+ )
tokenizer_config.json CHANGED
@@ -123,7 +123,7 @@
123
  "legacy": false,
124
  "model_max_length": 4096,
125
  "pad_token": "<unk>",
126
- "padding_side": "right",
127
  "sp_model_kwargs": {},
128
  "tokenizer_class": "LlamaTokenizer",
129
  "unk_token": "<unk>",
 
123
  "legacy": false,
124
  "model_max_length": 4096,
125
  "pad_token": "<unk>",
126
+ "padding_side": "left",
127
  "sp_model_kwargs": {},
128
  "tokenizer_class": "LlamaTokenizer",
129
  "unk_token": "<unk>",
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "total_flos": 5.485972481640161e+17,
4
+ "train_loss": 0.4824531834622566,
5
+ "train_runtime": 26326.043,
6
+ "train_samples_per_second": 0.685,
7
+ "train_steps_per_second": 0.342
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,3192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 9013,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0022190169754798626,
13
+ "grad_norm": 7.625,
14
+ "learning_rate": 3.3277870216306157e-07,
15
+ "loss": 1.2617,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.004438033950959725,
20
+ "grad_norm": 5.5625,
21
+ "learning_rate": 6.655574043261231e-07,
22
+ "loss": 1.2121,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.006657050926439588,
27
+ "grad_norm": 4.78125,
28
+ "learning_rate": 9.983361064891848e-07,
29
+ "loss": 1.2737,
30
+ "step": 60
31
+ },
32
+ {
33
+ "epoch": 0.00887606790191945,
34
+ "grad_norm": 5.46875,
35
+ "learning_rate": 1.3311148086522463e-06,
36
+ "loss": 1.1634,
37
+ "step": 80
38
+ },
39
+ {
40
+ "epoch": 0.011095084877399313,
41
+ "grad_norm": 6.46875,
42
+ "learning_rate": 1.6638935108153078e-06,
43
+ "loss": 1.1582,
44
+ "step": 100
45
+ },
46
+ {
47
+ "epoch": 0.013314101852879175,
48
+ "grad_norm": 6.09375,
49
+ "learning_rate": 1.9966722129783695e-06,
50
+ "loss": 1.1071,
51
+ "step": 120
52
+ },
53
+ {
54
+ "epoch": 0.015533118828359036,
55
+ "grad_norm": 5.5625,
56
+ "learning_rate": 2.329450915141431e-06,
57
+ "loss": 1.0944,
58
+ "step": 140
59
+ },
60
+ {
61
+ "epoch": 0.0177521358038389,
62
+ "grad_norm": 3.3125,
63
+ "learning_rate": 2.6622296173044925e-06,
64
+ "loss": 0.9622,
65
+ "step": 160
66
+ },
67
+ {
68
+ "epoch": 0.01997115277931876,
69
+ "grad_norm": 5.65625,
70
+ "learning_rate": 2.995008319467554e-06,
71
+ "loss": 0.7219,
72
+ "step": 180
73
+ },
74
+ {
75
+ "epoch": 0.022190169754798626,
76
+ "grad_norm": 3.234375,
77
+ "learning_rate": 3.3277870216306156e-06,
78
+ "loss": 0.6194,
79
+ "step": 200
80
+ },
81
+ {
82
+ "epoch": 0.024409186730278486,
83
+ "grad_norm": 3.359375,
84
+ "learning_rate": 3.6605657237936775e-06,
85
+ "loss": 0.5223,
86
+ "step": 220
87
+ },
88
+ {
89
+ "epoch": 0.02662820370575835,
90
+ "grad_norm": 2.234375,
91
+ "learning_rate": 3.993344425956739e-06,
92
+ "loss": 0.5673,
93
+ "step": 240
94
+ },
95
+ {
96
+ "epoch": 0.02884722068123821,
97
+ "grad_norm": 2.109375,
98
+ "learning_rate": 4.326123128119801e-06,
99
+ "loss": 0.5215,
100
+ "step": 260
101
+ },
102
+ {
103
+ "epoch": 0.031066237656718072,
104
+ "grad_norm": 2.765625,
105
+ "learning_rate": 4.658901830282862e-06,
106
+ "loss": 0.5166,
107
+ "step": 280
108
+ },
109
+ {
110
+ "epoch": 0.03328525463219793,
111
+ "grad_norm": 2.0625,
112
+ "learning_rate": 4.991680532445923e-06,
113
+ "loss": 0.5023,
114
+ "step": 300
115
+ },
116
+ {
117
+ "epoch": 0.0355042716076778,
118
+ "grad_norm": 2.0625,
119
+ "learning_rate": 5.324459234608985e-06,
120
+ "loss": 0.4611,
121
+ "step": 320
122
+ },
123
+ {
124
+ "epoch": 0.03772328858315766,
125
+ "grad_norm": 2.09375,
126
+ "learning_rate": 5.657237936772047e-06,
127
+ "loss": 0.5203,
128
+ "step": 340
129
+ },
130
+ {
131
+ "epoch": 0.03994230555863752,
132
+ "grad_norm": 2.34375,
133
+ "learning_rate": 5.990016638935108e-06,
134
+ "loss": 0.5498,
135
+ "step": 360
136
+ },
137
+ {
138
+ "epoch": 0.04216132253411738,
139
+ "grad_norm": 2.03125,
140
+ "learning_rate": 6.32279534109817e-06,
141
+ "loss": 0.5597,
142
+ "step": 380
143
+ },
144
+ {
145
+ "epoch": 0.04438033950959725,
146
+ "grad_norm": 2.453125,
147
+ "learning_rate": 6.655574043261231e-06,
148
+ "loss": 0.5133,
149
+ "step": 400
150
+ },
151
+ {
152
+ "epoch": 0.04659935648507711,
153
+ "grad_norm": 2.15625,
154
+ "learning_rate": 6.988352745424292e-06,
155
+ "loss": 0.4843,
156
+ "step": 420
157
+ },
158
+ {
159
+ "epoch": 0.04881837346055697,
160
+ "grad_norm": 2.265625,
161
+ "learning_rate": 7.321131447587355e-06,
162
+ "loss": 0.5358,
163
+ "step": 440
164
+ },
165
+ {
166
+ "epoch": 0.051037390436036834,
167
+ "grad_norm": 2.6875,
168
+ "learning_rate": 7.653910149750416e-06,
169
+ "loss": 0.3936,
170
+ "step": 460
171
+ },
172
+ {
173
+ "epoch": 0.0532564074115167,
174
+ "grad_norm": 2.125,
175
+ "learning_rate": 7.986688851913478e-06,
176
+ "loss": 0.5245,
177
+ "step": 480
178
+ },
179
+ {
180
+ "epoch": 0.05547542438699656,
181
+ "grad_norm": 2.796875,
182
+ "learning_rate": 8.319467554076538e-06,
183
+ "loss": 0.5094,
184
+ "step": 500
185
+ },
186
+ {
187
+ "epoch": 0.05769444136247642,
188
+ "grad_norm": 1.84375,
189
+ "learning_rate": 8.652246256239602e-06,
190
+ "loss": 0.4476,
191
+ "step": 520
192
+ },
193
+ {
194
+ "epoch": 0.059913458337956284,
195
+ "grad_norm": 2.09375,
196
+ "learning_rate": 8.985024958402662e-06,
197
+ "loss": 0.4836,
198
+ "step": 540
199
+ },
200
+ {
201
+ "epoch": 0.062132475313436145,
202
+ "grad_norm": 1.6328125,
203
+ "learning_rate": 9.317803660565724e-06,
204
+ "loss": 0.4805,
205
+ "step": 560
206
+ },
207
+ {
208
+ "epoch": 0.06435149228891601,
209
+ "grad_norm": 1.8828125,
210
+ "learning_rate": 9.650582362728786e-06,
211
+ "loss": 0.425,
212
+ "step": 580
213
+ },
214
+ {
215
+ "epoch": 0.06657050926439587,
216
+ "grad_norm": 2.6875,
217
+ "learning_rate": 9.983361064891846e-06,
218
+ "loss": 0.5223,
219
+ "step": 600
220
+ },
221
+ {
222
+ "epoch": 0.06878952623987573,
223
+ "grad_norm": 2.140625,
224
+ "learning_rate": 1.031613976705491e-05,
225
+ "loss": 0.5,
226
+ "step": 620
227
+ },
228
+ {
229
+ "epoch": 0.0710085432153556,
230
+ "grad_norm": 2.203125,
231
+ "learning_rate": 1.064891846921797e-05,
232
+ "loss": 0.5271,
233
+ "step": 640
234
+ },
235
+ {
236
+ "epoch": 0.07322756019083546,
237
+ "grad_norm": 1.9765625,
238
+ "learning_rate": 1.0981697171381032e-05,
239
+ "loss": 0.4981,
240
+ "step": 660
241
+ },
242
+ {
243
+ "epoch": 0.07544657716631532,
244
+ "grad_norm": 1.2421875,
245
+ "learning_rate": 1.1314475873544094e-05,
246
+ "loss": 0.5133,
247
+ "step": 680
248
+ },
249
+ {
250
+ "epoch": 0.07766559414179519,
251
+ "grad_norm": 2.515625,
252
+ "learning_rate": 1.1647254575707154e-05,
253
+ "loss": 0.4693,
254
+ "step": 700
255
+ },
256
+ {
257
+ "epoch": 0.07988461111727505,
258
+ "grad_norm": 2.03125,
259
+ "learning_rate": 1.1980033277870216e-05,
260
+ "loss": 0.4844,
261
+ "step": 720
262
+ },
263
+ {
264
+ "epoch": 0.08210362809275491,
265
+ "grad_norm": 1.578125,
266
+ "learning_rate": 1.2312811980033278e-05,
267
+ "loss": 0.4943,
268
+ "step": 740
269
+ },
270
+ {
271
+ "epoch": 0.08432264506823477,
272
+ "grad_norm": 2.75,
273
+ "learning_rate": 1.264559068219634e-05,
274
+ "loss": 0.5,
275
+ "step": 760
276
+ },
277
+ {
278
+ "epoch": 0.08654166204371463,
279
+ "grad_norm": 1.46875,
280
+ "learning_rate": 1.2978369384359402e-05,
281
+ "loss": 0.4318,
282
+ "step": 780
283
+ },
284
+ {
285
+ "epoch": 0.0887606790191945,
286
+ "grad_norm": 2.484375,
287
+ "learning_rate": 1.3311148086522462e-05,
288
+ "loss": 0.4745,
289
+ "step": 800
290
+ },
291
+ {
292
+ "epoch": 0.09097969599467436,
293
+ "grad_norm": 2.28125,
294
+ "learning_rate": 1.3643926788685524e-05,
295
+ "loss": 0.5459,
296
+ "step": 820
297
+ },
298
+ {
299
+ "epoch": 0.09319871297015422,
300
+ "grad_norm": 2.078125,
301
+ "learning_rate": 1.3976705490848584e-05,
302
+ "loss": 0.5021,
303
+ "step": 840
304
+ },
305
+ {
306
+ "epoch": 0.09541772994563408,
307
+ "grad_norm": 0.97265625,
308
+ "learning_rate": 1.4309484193011648e-05,
309
+ "loss": 0.4271,
310
+ "step": 860
311
+ },
312
+ {
313
+ "epoch": 0.09763674692111395,
314
+ "grad_norm": 1.828125,
315
+ "learning_rate": 1.464226289517471e-05,
316
+ "loss": 0.4924,
317
+ "step": 880
318
+ },
319
+ {
320
+ "epoch": 0.09985576389659381,
321
+ "grad_norm": 2.25,
322
+ "learning_rate": 1.497504159733777e-05,
323
+ "loss": 0.514,
324
+ "step": 900
325
+ },
326
+ {
327
+ "epoch": 0.10207478087207367,
328
+ "grad_norm": 1.578125,
329
+ "learning_rate": 1.5307820299500832e-05,
330
+ "loss": 0.4569,
331
+ "step": 920
332
+ },
333
+ {
334
+ "epoch": 0.10429379784755353,
335
+ "grad_norm": 1.4140625,
336
+ "learning_rate": 1.5640599001663892e-05,
337
+ "loss": 0.4751,
338
+ "step": 940
339
+ },
340
+ {
341
+ "epoch": 0.1065128148230334,
342
+ "grad_norm": 2.1875,
343
+ "learning_rate": 1.5973377703826956e-05,
344
+ "loss": 0.4719,
345
+ "step": 960
346
+ },
347
+ {
348
+ "epoch": 0.10873183179851326,
349
+ "grad_norm": 1.921875,
350
+ "learning_rate": 1.6306156405990016e-05,
351
+ "loss": 0.4455,
352
+ "step": 980
353
+ },
354
+ {
355
+ "epoch": 0.11095084877399312,
356
+ "grad_norm": 1.7421875,
357
+ "learning_rate": 1.6638935108153077e-05,
358
+ "loss": 0.5068,
359
+ "step": 1000
360
+ },
361
+ {
362
+ "epoch": 0.11316986574947298,
363
+ "grad_norm": 1.96875,
364
+ "learning_rate": 1.697171381031614e-05,
365
+ "loss": 0.5076,
366
+ "step": 1020
367
+ },
368
+ {
369
+ "epoch": 0.11538888272495285,
370
+ "grad_norm": 2.0625,
371
+ "learning_rate": 1.7304492512479204e-05,
372
+ "loss": 0.449,
373
+ "step": 1040
374
+ },
375
+ {
376
+ "epoch": 0.11760789970043271,
377
+ "grad_norm": 2.859375,
378
+ "learning_rate": 1.7637271214642264e-05,
379
+ "loss": 0.4298,
380
+ "step": 1060
381
+ },
382
+ {
383
+ "epoch": 0.11982691667591257,
384
+ "grad_norm": 2.0625,
385
+ "learning_rate": 1.7970049916805324e-05,
386
+ "loss": 0.5298,
387
+ "step": 1080
388
+ },
389
+ {
390
+ "epoch": 0.12204593365139244,
391
+ "grad_norm": 1.90625,
392
+ "learning_rate": 1.8302828618968388e-05,
393
+ "loss": 0.5398,
394
+ "step": 1100
395
+ },
396
+ {
397
+ "epoch": 0.12426495062687229,
398
+ "grad_norm": 1.40625,
399
+ "learning_rate": 1.8635607321131448e-05,
400
+ "loss": 0.5533,
401
+ "step": 1120
402
+ },
403
+ {
404
+ "epoch": 0.12648396760235217,
405
+ "grad_norm": 2.21875,
406
+ "learning_rate": 1.896838602329451e-05,
407
+ "loss": 0.422,
408
+ "step": 1140
409
+ },
410
+ {
411
+ "epoch": 0.12870298457783202,
412
+ "grad_norm": 1.96875,
413
+ "learning_rate": 1.9301164725457572e-05,
414
+ "loss": 0.4807,
415
+ "step": 1160
416
+ },
417
+ {
418
+ "epoch": 0.13092200155331188,
419
+ "grad_norm": 1.484375,
420
+ "learning_rate": 1.9633943427620632e-05,
421
+ "loss": 0.5209,
422
+ "step": 1180
423
+ },
424
+ {
425
+ "epoch": 0.13314101852879173,
426
+ "grad_norm": 1.9765625,
427
+ "learning_rate": 1.9966722129783693e-05,
428
+ "loss": 0.4522,
429
+ "step": 1200
430
+ },
431
+ {
432
+ "epoch": 0.13536003550427161,
433
+ "grad_norm": 1.3828125,
434
+ "learning_rate": 2.0299500831946756e-05,
435
+ "loss": 0.4684,
436
+ "step": 1220
437
+ },
438
+ {
439
+ "epoch": 0.13757905247975147,
440
+ "grad_norm": 1.59375,
441
+ "learning_rate": 2.063227953410982e-05,
442
+ "loss": 0.3982,
443
+ "step": 1240
444
+ },
445
+ {
446
+ "epoch": 0.13979806945523132,
447
+ "grad_norm": 1.7734375,
448
+ "learning_rate": 2.096505823627288e-05,
449
+ "loss": 0.5518,
450
+ "step": 1260
451
+ },
452
+ {
453
+ "epoch": 0.1420170864307112,
454
+ "grad_norm": 1.6875,
455
+ "learning_rate": 2.129783693843594e-05,
456
+ "loss": 0.5107,
457
+ "step": 1280
458
+ },
459
+ {
460
+ "epoch": 0.14423610340619106,
461
+ "grad_norm": 1.453125,
462
+ "learning_rate": 2.1630615640599004e-05,
463
+ "loss": 0.4422,
464
+ "step": 1300
465
+ },
466
+ {
467
+ "epoch": 0.1464551203816709,
468
+ "grad_norm": 2.015625,
469
+ "learning_rate": 2.1963394342762064e-05,
470
+ "loss": 0.5578,
471
+ "step": 1320
472
+ },
473
+ {
474
+ "epoch": 0.1486741373571508,
475
+ "grad_norm": 1.4921875,
476
+ "learning_rate": 2.2296173044925124e-05,
477
+ "loss": 0.4516,
478
+ "step": 1340
479
+ },
480
+ {
481
+ "epoch": 0.15089315433263065,
482
+ "grad_norm": 2.15625,
483
+ "learning_rate": 2.2628951747088188e-05,
484
+ "loss": 0.3979,
485
+ "step": 1360
486
+ },
487
+ {
488
+ "epoch": 0.1531121713081105,
489
+ "grad_norm": 1.4140625,
490
+ "learning_rate": 2.296173044925125e-05,
491
+ "loss": 0.4895,
492
+ "step": 1380
493
+ },
494
+ {
495
+ "epoch": 0.15533118828359038,
496
+ "grad_norm": 1.453125,
497
+ "learning_rate": 2.329450915141431e-05,
498
+ "loss": 0.4505,
499
+ "step": 1400
500
+ },
501
+ {
502
+ "epoch": 0.15755020525907024,
503
+ "grad_norm": 2.265625,
504
+ "learning_rate": 2.3627287853577372e-05,
505
+ "loss": 0.5008,
506
+ "step": 1420
507
+ },
508
+ {
509
+ "epoch": 0.1597692222345501,
510
+ "grad_norm": 1.5390625,
511
+ "learning_rate": 2.3960066555740432e-05,
512
+ "loss": 0.523,
513
+ "step": 1440
514
+ },
515
+ {
516
+ "epoch": 0.16198823921002994,
517
+ "grad_norm": 1.5546875,
518
+ "learning_rate": 2.4292845257903493e-05,
519
+ "loss": 0.4813,
520
+ "step": 1460
521
+ },
522
+ {
523
+ "epoch": 0.16420725618550983,
524
+ "grad_norm": 1.46875,
525
+ "learning_rate": 2.4625623960066556e-05,
526
+ "loss": 0.4995,
527
+ "step": 1480
528
+ },
529
+ {
530
+ "epoch": 0.16642627316098968,
531
+ "grad_norm": 1.8359375,
532
+ "learning_rate": 2.495840266222962e-05,
533
+ "loss": 0.474,
534
+ "step": 1500
535
+ },
536
+ {
537
+ "epoch": 0.16864529013646953,
538
+ "grad_norm": 1.6328125,
539
+ "learning_rate": 2.529118136439268e-05,
540
+ "loss": 0.4201,
541
+ "step": 1520
542
+ },
543
+ {
544
+ "epoch": 0.17086430711194942,
545
+ "grad_norm": 2.15625,
546
+ "learning_rate": 2.562396006655574e-05,
547
+ "loss": 0.5332,
548
+ "step": 1540
549
+ },
550
+ {
551
+ "epoch": 0.17308332408742927,
552
+ "grad_norm": 2.53125,
553
+ "learning_rate": 2.5956738768718804e-05,
554
+ "loss": 0.5105,
555
+ "step": 1560
556
+ },
557
+ {
558
+ "epoch": 0.17530234106290912,
559
+ "grad_norm": 1.734375,
560
+ "learning_rate": 2.6289517470881864e-05,
561
+ "loss": 0.4679,
562
+ "step": 1580
563
+ },
564
+ {
565
+ "epoch": 0.177521358038389,
566
+ "grad_norm": 1.4453125,
567
+ "learning_rate": 2.6622296173044925e-05,
568
+ "loss": 0.4276,
569
+ "step": 1600
570
+ },
571
+ {
572
+ "epoch": 0.17974037501386886,
573
+ "grad_norm": 1.9609375,
574
+ "learning_rate": 2.6955074875207988e-05,
575
+ "loss": 0.4462,
576
+ "step": 1620
577
+ },
578
+ {
579
+ "epoch": 0.1819593919893487,
580
+ "grad_norm": 1.734375,
581
+ "learning_rate": 2.728785357737105e-05,
582
+ "loss": 0.4534,
583
+ "step": 1640
584
+ },
585
+ {
586
+ "epoch": 0.1841784089648286,
587
+ "grad_norm": 1.5703125,
588
+ "learning_rate": 2.762063227953411e-05,
589
+ "loss": 0.4699,
590
+ "step": 1660
591
+ },
592
+ {
593
+ "epoch": 0.18639742594030845,
594
+ "grad_norm": 1.828125,
595
+ "learning_rate": 2.795341098169717e-05,
596
+ "loss": 0.483,
597
+ "step": 1680
598
+ },
599
+ {
600
+ "epoch": 0.1886164429157883,
601
+ "grad_norm": 2.765625,
602
+ "learning_rate": 2.8286189683860236e-05,
603
+ "loss": 0.4776,
604
+ "step": 1700
605
+ },
606
+ {
607
+ "epoch": 0.19083545989126816,
608
+ "grad_norm": 2.0,
609
+ "learning_rate": 2.8618968386023296e-05,
610
+ "loss": 0.4361,
611
+ "step": 1720
612
+ },
613
+ {
614
+ "epoch": 0.19305447686674804,
615
+ "grad_norm": 1.640625,
616
+ "learning_rate": 2.8951747088186356e-05,
617
+ "loss": 0.4566,
618
+ "step": 1740
619
+ },
620
+ {
621
+ "epoch": 0.1952734938422279,
622
+ "grad_norm": 1.640625,
623
+ "learning_rate": 2.928452579034942e-05,
624
+ "loss": 0.4609,
625
+ "step": 1760
626
+ },
627
+ {
628
+ "epoch": 0.19749251081770774,
629
+ "grad_norm": 1.9140625,
630
+ "learning_rate": 2.961730449251248e-05,
631
+ "loss": 0.5019,
632
+ "step": 1780
633
+ },
634
+ {
635
+ "epoch": 0.19971152779318763,
636
+ "grad_norm": 2.125,
637
+ "learning_rate": 2.995008319467554e-05,
638
+ "loss": 0.4844,
639
+ "step": 1800
640
+ },
641
+ {
642
+ "epoch": 0.20193054476866748,
643
+ "grad_norm": 2.015625,
644
+ "learning_rate": 2.999958848436878e-05,
645
+ "loss": 0.4974,
646
+ "step": 1820
647
+ },
648
+ {
649
+ "epoch": 0.20414956174414733,
650
+ "grad_norm": 1.828125,
651
+ "learning_rate": 2.9998050673796383e-05,
652
+ "loss": 0.4591,
653
+ "step": 1840
654
+ },
655
+ {
656
+ "epoch": 0.20636857871962722,
657
+ "grad_norm": 1.8671875,
658
+ "learning_rate": 2.999537386964595e-05,
659
+ "loss": 0.4319,
660
+ "step": 1860
661
+ },
662
+ {
663
+ "epoch": 0.20858759569510707,
664
+ "grad_norm": 1.953125,
665
+ "learning_rate": 2.9991558275201416e-05,
666
+ "loss": 0.4425,
667
+ "step": 1880
668
+ },
669
+ {
670
+ "epoch": 0.21080661267058692,
671
+ "grad_norm": 1.703125,
672
+ "learning_rate": 2.998660418022961e-05,
673
+ "loss": 0.4729,
674
+ "step": 1900
675
+ },
676
+ {
677
+ "epoch": 0.2130256296460668,
678
+ "grad_norm": 1.6484375,
679
+ "learning_rate": 2.9980511960958247e-05,
680
+ "loss": 0.4049,
681
+ "step": 1920
682
+ },
683
+ {
684
+ "epoch": 0.21524464662154666,
685
+ "grad_norm": 1.671875,
686
+ "learning_rate": 2.9973282080047365e-05,
687
+ "loss": 0.4646,
688
+ "step": 1940
689
+ },
690
+ {
691
+ "epoch": 0.2174636635970265,
692
+ "grad_norm": 1.6875,
693
+ "learning_rate": 2.996491508655417e-05,
694
+ "loss": 0.4725,
695
+ "step": 1960
696
+ },
697
+ {
698
+ "epoch": 0.21968268057250637,
699
+ "grad_norm": 1.953125,
700
+ "learning_rate": 2.995541161589137e-05,
701
+ "loss": 0.4448,
702
+ "step": 1980
703
+ },
704
+ {
705
+ "epoch": 0.22190169754798625,
706
+ "grad_norm": 1.3046875,
707
+ "learning_rate": 2.994477238977889e-05,
708
+ "loss": 0.4673,
709
+ "step": 2000
710
+ },
711
+ {
712
+ "epoch": 0.2241207145234661,
713
+ "grad_norm": 1.71875,
714
+ "learning_rate": 2.9932998216189077e-05,
715
+ "loss": 0.423,
716
+ "step": 2020
717
+ },
718
+ {
719
+ "epoch": 0.22633973149894596,
720
+ "grad_norm": 1.703125,
721
+ "learning_rate": 2.992008998928534e-05,
722
+ "loss": 0.4803,
723
+ "step": 2040
724
+ },
725
+ {
726
+ "epoch": 0.22855874847442584,
727
+ "grad_norm": 1.4296875,
728
+ "learning_rate": 2.990604868935424e-05,
729
+ "loss": 0.4604,
730
+ "step": 2060
731
+ },
732
+ {
733
+ "epoch": 0.2307777654499057,
734
+ "grad_norm": 1.890625,
735
+ "learning_rate": 2.989087538273105e-05,
736
+ "loss": 0.5155,
737
+ "step": 2080
738
+ },
739
+ {
740
+ "epoch": 0.23299678242538555,
741
+ "grad_norm": 1.7421875,
742
+ "learning_rate": 2.9874571221718776e-05,
743
+ "loss": 0.5122,
744
+ "step": 2100
745
+ },
746
+ {
747
+ "epoch": 0.23521579940086543,
748
+ "grad_norm": 1.765625,
749
+ "learning_rate": 2.985713744450063e-05,
750
+ "loss": 0.4475,
751
+ "step": 2120
752
+ },
753
+ {
754
+ "epoch": 0.23743481637634528,
755
+ "grad_norm": 2.15625,
756
+ "learning_rate": 2.9838575375046034e-05,
757
+ "loss": 0.4281,
758
+ "step": 2140
759
+ },
760
+ {
761
+ "epoch": 0.23965383335182514,
762
+ "grad_norm": 1.9296875,
763
+ "learning_rate": 2.9818886423010024e-05,
764
+ "loss": 0.4383,
765
+ "step": 2160
766
+ },
767
+ {
768
+ "epoch": 0.24187285032730502,
769
+ "grad_norm": 1.7421875,
770
+ "learning_rate": 2.979807208362625e-05,
771
+ "loss": 0.449,
772
+ "step": 2180
773
+ },
774
+ {
775
+ "epoch": 0.24409186730278487,
776
+ "grad_norm": 1.4453125,
777
+ "learning_rate": 2.9776133937593395e-05,
778
+ "loss": 0.5002,
779
+ "step": 2200
780
+ },
781
+ {
782
+ "epoch": 0.24631088427826472,
783
+ "grad_norm": 1.6484375,
784
+ "learning_rate": 2.9753073650955128e-05,
785
+ "loss": 0.4667,
786
+ "step": 2220
787
+ },
788
+ {
789
+ "epoch": 0.24852990125374458,
790
+ "grad_norm": 2.203125,
791
+ "learning_rate": 2.9728892974973592e-05,
792
+ "loss": 0.4431,
793
+ "step": 2240
794
+ },
795
+ {
796
+ "epoch": 0.25074891822922446,
797
+ "grad_norm": 1.78125,
798
+ "learning_rate": 2.970359374599641e-05,
799
+ "loss": 0.4684,
800
+ "step": 2260
801
+ },
802
+ {
803
+ "epoch": 0.25296793520470434,
804
+ "grad_norm": 2.15625,
805
+ "learning_rate": 2.967717788531722e-05,
806
+ "loss": 0.4599,
807
+ "step": 2280
808
+ },
809
+ {
810
+ "epoch": 0.25518695218018417,
811
+ "grad_norm": 1.4453125,
812
+ "learning_rate": 2.9649647399029764e-05,
813
+ "loss": 0.5047,
814
+ "step": 2300
815
+ },
816
+ {
817
+ "epoch": 0.25740596915566405,
818
+ "grad_norm": 2.265625,
819
+ "learning_rate": 2.9621004377875558e-05,
820
+ "loss": 0.4824,
821
+ "step": 2320
822
+ },
823
+ {
824
+ "epoch": 0.2596249861311439,
825
+ "grad_norm": 1.3515625,
826
+ "learning_rate": 2.959125099708509e-05,
827
+ "loss": 0.4928,
828
+ "step": 2340
829
+ },
830
+ {
831
+ "epoch": 0.26184400310662376,
832
+ "grad_norm": 1.5703125,
833
+ "learning_rate": 2.9560389516212638e-05,
834
+ "loss": 0.5386,
835
+ "step": 2360
836
+ },
837
+ {
838
+ "epoch": 0.26406302008210364,
839
+ "grad_norm": 0.96875,
840
+ "learning_rate": 2.9528422278964687e-05,
841
+ "loss": 0.4092,
842
+ "step": 2380
843
+ },
844
+ {
845
+ "epoch": 0.26628203705758346,
846
+ "grad_norm": 1.5703125,
847
+ "learning_rate": 2.949535171302192e-05,
848
+ "loss": 0.4929,
849
+ "step": 2400
850
+ },
851
+ {
852
+ "epoch": 0.26850105403306335,
853
+ "grad_norm": 1.5859375,
854
+ "learning_rate": 2.9461180329854867e-05,
855
+ "loss": 0.4893,
856
+ "step": 2420
857
+ },
858
+ {
859
+ "epoch": 0.27072007100854323,
860
+ "grad_norm": 1.890625,
861
+ "learning_rate": 2.9425910724533165e-05,
862
+ "loss": 0.4554,
863
+ "step": 2440
864
+ },
865
+ {
866
+ "epoch": 0.27293908798402305,
867
+ "grad_norm": 1.65625,
868
+ "learning_rate": 2.9389545575528496e-05,
869
+ "loss": 0.4702,
870
+ "step": 2460
871
+ },
872
+ {
873
+ "epoch": 0.27515810495950294,
874
+ "grad_norm": 1.375,
875
+ "learning_rate": 2.9352087644511162e-05,
876
+ "loss": 0.5056,
877
+ "step": 2480
878
+ },
879
+ {
880
+ "epoch": 0.2773771219349828,
881
+ "grad_norm": 2.859375,
882
+ "learning_rate": 2.9313539776140362e-05,
883
+ "loss": 0.428,
884
+ "step": 2500
885
+ },
886
+ {
887
+ "epoch": 0.27959613891046264,
888
+ "grad_norm": 1.7890625,
889
+ "learning_rate": 2.9273904897848174e-05,
890
+ "loss": 0.4827,
891
+ "step": 2520
892
+ },
893
+ {
894
+ "epoch": 0.2818151558859425,
895
+ "grad_norm": 1.359375,
896
+ "learning_rate": 2.9233186019617214e-05,
897
+ "loss": 0.5082,
898
+ "step": 2540
899
+ },
900
+ {
901
+ "epoch": 0.2840341728614224,
902
+ "grad_norm": 1.421875,
903
+ "learning_rate": 2.9191386233752062e-05,
904
+ "loss": 0.4803,
905
+ "step": 2560
906
+ },
907
+ {
908
+ "epoch": 0.28625318983690223,
909
+ "grad_norm": 1.859375,
910
+ "learning_rate": 2.9148508714644424e-05,
911
+ "loss": 0.5205,
912
+ "step": 2580
913
+ },
914
+ {
915
+ "epoch": 0.2884722068123821,
916
+ "grad_norm": 1.546875,
917
+ "learning_rate": 2.9104556718532054e-05,
918
+ "loss": 0.4965,
919
+ "step": 2600
920
+ },
921
+ {
922
+ "epoch": 0.290691223787862,
923
+ "grad_norm": 1.5078125,
924
+ "learning_rate": 2.9059533583251487e-05,
925
+ "loss": 0.4376,
926
+ "step": 2620
927
+ },
928
+ {
929
+ "epoch": 0.2929102407633418,
930
+ "grad_norm": 1.7578125,
931
+ "learning_rate": 2.9013442727984517e-05,
932
+ "loss": 0.4618,
933
+ "step": 2640
934
+ },
935
+ {
936
+ "epoch": 0.2951292577388217,
937
+ "grad_norm": 1.640625,
938
+ "learning_rate": 2.8966287652998562e-05,
939
+ "loss": 0.4943,
940
+ "step": 2660
941
+ },
942
+ {
943
+ "epoch": 0.2973482747143016,
944
+ "grad_norm": 1.703125,
945
+ "learning_rate": 2.891807193938085e-05,
946
+ "loss": 0.4582,
947
+ "step": 2680
948
+ },
949
+ {
950
+ "epoch": 0.2995672916897814,
951
+ "grad_norm": 1.6875,
952
+ "learning_rate": 2.8868799248766436e-05,
953
+ "loss": 0.5133,
954
+ "step": 2700
955
+ },
956
+ {
957
+ "epoch": 0.3017863086652613,
958
+ "grad_norm": 1.71875,
959
+ "learning_rate": 2.8818473323060143e-05,
960
+ "loss": 0.4628,
961
+ "step": 2720
962
+ },
963
+ {
964
+ "epoch": 0.3040053256407412,
965
+ "grad_norm": 1.609375,
966
+ "learning_rate": 2.87670979841524e-05,
967
+ "loss": 0.4408,
968
+ "step": 2740
969
+ },
970
+ {
971
+ "epoch": 0.306224342616221,
972
+ "grad_norm": 1.734375,
973
+ "learning_rate": 2.8714677133628963e-05,
974
+ "loss": 0.5004,
975
+ "step": 2760
976
+ },
977
+ {
978
+ "epoch": 0.3084433595917009,
979
+ "grad_norm": 1.6640625,
980
+ "learning_rate": 2.866121475247467e-05,
981
+ "loss": 0.4031,
982
+ "step": 2780
983
+ },
984
+ {
985
+ "epoch": 0.31066237656718076,
986
+ "grad_norm": 1.8046875,
987
+ "learning_rate": 2.8606714900771055e-05,
988
+ "loss": 0.5192,
989
+ "step": 2800
990
+ },
991
+ {
992
+ "epoch": 0.3128813935426606,
993
+ "grad_norm": 2.03125,
994
+ "learning_rate": 2.8551181717388066e-05,
995
+ "loss": 0.5397,
996
+ "step": 2820
997
+ },
998
+ {
999
+ "epoch": 0.3151004105181405,
1000
+ "grad_norm": 1.9609375,
1001
+ "learning_rate": 2.849461941966972e-05,
1002
+ "loss": 0.4446,
1003
+ "step": 2840
1004
+ },
1005
+ {
1006
+ "epoch": 0.3173194274936203,
1007
+ "grad_norm": 1.9296875,
1008
+ "learning_rate": 2.8437032303113823e-05,
1009
+ "loss": 0.4464,
1010
+ "step": 2860
1011
+ },
1012
+ {
1013
+ "epoch": 0.3195384444691002,
1014
+ "grad_norm": 1.734375,
1015
+ "learning_rate": 2.8378424741045773e-05,
1016
+ "loss": 0.526,
1017
+ "step": 2880
1018
+ },
1019
+ {
1020
+ "epoch": 0.32175746144458006,
1021
+ "grad_norm": 1.7265625,
1022
+ "learning_rate": 2.831880118428644e-05,
1023
+ "loss": 0.4087,
1024
+ "step": 2900
1025
+ },
1026
+ {
1027
+ "epoch": 0.3239764784200599,
1028
+ "grad_norm": 1.125,
1029
+ "learning_rate": 2.8258166160814135e-05,
1030
+ "loss": 0.4833,
1031
+ "step": 2920
1032
+ },
1033
+ {
1034
+ "epoch": 0.32619549539553977,
1035
+ "grad_norm": 1.34375,
1036
+ "learning_rate": 2.8196524275420758e-05,
1037
+ "loss": 0.4403,
1038
+ "step": 2940
1039
+ },
1040
+ {
1041
+ "epoch": 0.32841451237101965,
1042
+ "grad_norm": 1.7421875,
1043
+ "learning_rate": 2.813388020936211e-05,
1044
+ "loss": 0.4728,
1045
+ "step": 2960
1046
+ },
1047
+ {
1048
+ "epoch": 0.3306335293464995,
1049
+ "grad_norm": 1.0390625,
1050
+ "learning_rate": 2.8070238720002364e-05,
1051
+ "loss": 0.4389,
1052
+ "step": 2980
1053
+ },
1054
+ {
1055
+ "epoch": 0.33285254632197936,
1056
+ "grad_norm": 0.90625,
1057
+ "learning_rate": 2.800560464045278e-05,
1058
+ "loss": 0.482,
1059
+ "step": 3000
1060
+ },
1061
+ {
1062
+ "epoch": 0.33507156329745924,
1063
+ "grad_norm": 1.6796875,
1064
+ "learning_rate": 2.7939982879204686e-05,
1065
+ "loss": 0.4157,
1066
+ "step": 3020
1067
+ },
1068
+ {
1069
+ "epoch": 0.33729058027293907,
1070
+ "grad_norm": 1.9140625,
1071
+ "learning_rate": 2.787337841975668e-05,
1072
+ "loss": 0.4593,
1073
+ "step": 3040
1074
+ },
1075
+ {
1076
+ "epoch": 0.33950959724841895,
1077
+ "grad_norm": 1.2421875,
1078
+ "learning_rate": 2.78057963202362e-05,
1079
+ "loss": 0.4071,
1080
+ "step": 3060
1081
+ },
1082
+ {
1083
+ "epoch": 0.34172861422389883,
1084
+ "grad_norm": 1.671875,
1085
+ "learning_rate": 2.773724171301538e-05,
1086
+ "loss": 0.4307,
1087
+ "step": 3080
1088
+ },
1089
+ {
1090
+ "epoch": 0.34394763119937866,
1091
+ "grad_norm": 2.75,
1092
+ "learning_rate": 2.7667719804321285e-05,
1093
+ "loss": 0.5196,
1094
+ "step": 3100
1095
+ },
1096
+ {
1097
+ "epoch": 0.34616664817485854,
1098
+ "grad_norm": 1.71875,
1099
+ "learning_rate": 2.7597235873840544e-05,
1100
+ "loss": 0.4529,
1101
+ "step": 3120
1102
+ },
1103
+ {
1104
+ "epoch": 0.3483856651503384,
1105
+ "grad_norm": 1.453125,
1106
+ "learning_rate": 2.7525795274318386e-05,
1107
+ "loss": 0.5671,
1108
+ "step": 3140
1109
+ },
1110
+ {
1111
+ "epoch": 0.35060468212581825,
1112
+ "grad_norm": 1.6484375,
1113
+ "learning_rate": 2.745340343115213e-05,
1114
+ "loss": 0.506,
1115
+ "step": 3160
1116
+ },
1117
+ {
1118
+ "epoch": 0.3528236991012981,
1119
+ "grad_norm": 1.828125,
1120
+ "learning_rate": 2.7380065841979196e-05,
1121
+ "loss": 0.4834,
1122
+ "step": 3180
1123
+ },
1124
+ {
1125
+ "epoch": 0.355042716076778,
1126
+ "grad_norm": 1.9296875,
1127
+ "learning_rate": 2.7305788076259565e-05,
1128
+ "loss": 0.4635,
1129
+ "step": 3200
1130
+ },
1131
+ {
1132
+ "epoch": 0.35726173305225783,
1133
+ "grad_norm": 1.7109375,
1134
+ "learning_rate": 2.7230575774852843e-05,
1135
+ "loss": 0.4873,
1136
+ "step": 3220
1137
+ },
1138
+ {
1139
+ "epoch": 0.3594807500277377,
1140
+ "grad_norm": 1.578125,
1141
+ "learning_rate": 2.715443464958986e-05,
1142
+ "loss": 0.4133,
1143
+ "step": 3240
1144
+ },
1145
+ {
1146
+ "epoch": 0.3616997670032176,
1147
+ "grad_norm": 2.03125,
1148
+ "learning_rate": 2.707737048283891e-05,
1149
+ "loss": 0.4954,
1150
+ "step": 3260
1151
+ },
1152
+ {
1153
+ "epoch": 0.3639187839786974,
1154
+ "grad_norm": 1.3671875,
1155
+ "learning_rate": 2.699938912706663e-05,
1156
+ "loss": 0.4585,
1157
+ "step": 3280
1158
+ },
1159
+ {
1160
+ "epoch": 0.3661378009541773,
1161
+ "grad_norm": 1.921875,
1162
+ "learning_rate": 2.6920496504393507e-05,
1163
+ "loss": 0.5479,
1164
+ "step": 3300
1165
+ },
1166
+ {
1167
+ "epoch": 0.3683568179296572,
1168
+ "grad_norm": 2.515625,
1169
+ "learning_rate": 2.6840698606144197e-05,
1170
+ "loss": 0.4712,
1171
+ "step": 3320
1172
+ },
1173
+ {
1174
+ "epoch": 0.370575834905137,
1175
+ "grad_norm": 2.28125,
1176
+ "learning_rate": 2.6760001492392474e-05,
1177
+ "loss": 0.5046,
1178
+ "step": 3340
1179
+ },
1180
+ {
1181
+ "epoch": 0.3727948518806169,
1182
+ "grad_norm": 1.53125,
1183
+ "learning_rate": 2.6678411291501038e-05,
1184
+ "loss": 0.522,
1185
+ "step": 3360
1186
+ },
1187
+ {
1188
+ "epoch": 0.3750138688560967,
1189
+ "grad_norm": 1.6796875,
1190
+ "learning_rate": 2.6595934199656108e-05,
1191
+ "loss": 0.4852,
1192
+ "step": 3380
1193
+ },
1194
+ {
1195
+ "epoch": 0.3772328858315766,
1196
+ "grad_norm": 1.9140625,
1197
+ "learning_rate": 2.6512576480396862e-05,
1198
+ "loss": 0.4745,
1199
+ "step": 3400
1200
+ },
1201
+ {
1202
+ "epoch": 0.3794519028070565,
1203
+ "grad_norm": 1.71875,
1204
+ "learning_rate": 2.6428344464139756e-05,
1205
+ "loss": 0.4903,
1206
+ "step": 3420
1207
+ },
1208
+ {
1209
+ "epoch": 0.3816709197825363,
1210
+ "grad_norm": 1.625,
1211
+ "learning_rate": 2.6343244547697798e-05,
1212
+ "loss": 0.3906,
1213
+ "step": 3440
1214
+ },
1215
+ {
1216
+ "epoch": 0.3838899367580162,
1217
+ "grad_norm": 1.859375,
1218
+ "learning_rate": 2.6257283193794742e-05,
1219
+ "loss": 0.471,
1220
+ "step": 3460
1221
+ },
1222
+ {
1223
+ "epoch": 0.3861089537334961,
1224
+ "grad_norm": 1.90625,
1225
+ "learning_rate": 2.617046693057429e-05,
1226
+ "loss": 0.4878,
1227
+ "step": 3480
1228
+ },
1229
+ {
1230
+ "epoch": 0.3883279707089759,
1231
+ "grad_norm": 1.765625,
1232
+ "learning_rate": 2.6082802351104317e-05,
1233
+ "loss": 0.4718,
1234
+ "step": 3500
1235
+ },
1236
+ {
1237
+ "epoch": 0.3905469876844558,
1238
+ "grad_norm": 1.8828125,
1239
+ "learning_rate": 2.5994296112876222e-05,
1240
+ "loss": 0.4649,
1241
+ "step": 3520
1242
+ },
1243
+ {
1244
+ "epoch": 0.39276600465993566,
1245
+ "grad_norm": 1.2109375,
1246
+ "learning_rate": 2.5904954937299267e-05,
1247
+ "loss": 0.3973,
1248
+ "step": 3540
1249
+ },
1250
+ {
1251
+ "epoch": 0.3949850216354155,
1252
+ "grad_norm": 1.4609375,
1253
+ "learning_rate": 2.5814785609190197e-05,
1254
+ "loss": 0.4785,
1255
+ "step": 3560
1256
+ },
1257
+ {
1258
+ "epoch": 0.39720403861089537,
1259
+ "grad_norm": 2.171875,
1260
+ "learning_rate": 2.5723794976257947e-05,
1261
+ "loss": 0.4512,
1262
+ "step": 3580
1263
+ },
1264
+ {
1265
+ "epoch": 0.39942305558637525,
1266
+ "grad_norm": 1.7265625,
1267
+ "learning_rate": 2.5631989948583623e-05,
1268
+ "loss": 0.4931,
1269
+ "step": 3600
1270
+ },
1271
+ {
1272
+ "epoch": 0.4016420725618551,
1273
+ "grad_norm": 1.1796875,
1274
+ "learning_rate": 2.553937749809572e-05,
1275
+ "loss": 0.4183,
1276
+ "step": 3620
1277
+ },
1278
+ {
1279
+ "epoch": 0.40386108953733496,
1280
+ "grad_norm": 1.7890625,
1281
+ "learning_rate": 2.544596465804068e-05,
1282
+ "loss": 0.4321,
1283
+ "step": 3640
1284
+ },
1285
+ {
1286
+ "epoch": 0.40608010651281484,
1287
+ "grad_norm": 2.109375,
1288
+ "learning_rate": 2.5351758522448724e-05,
1289
+ "loss": 0.489,
1290
+ "step": 3660
1291
+ },
1292
+ {
1293
+ "epoch": 0.40829912348829467,
1294
+ "grad_norm": 2.03125,
1295
+ "learning_rate": 2.5256766245595166e-05,
1296
+ "loss": 0.4398,
1297
+ "step": 3680
1298
+ },
1299
+ {
1300
+ "epoch": 0.41051814046377455,
1301
+ "grad_norm": 1.6484375,
1302
+ "learning_rate": 2.516099504145703e-05,
1303
+ "loss": 0.4831,
1304
+ "step": 3700
1305
+ },
1306
+ {
1307
+ "epoch": 0.41273715743925443,
1308
+ "grad_norm": 1.90625,
1309
+ "learning_rate": 2.5064452183165283e-05,
1310
+ "loss": 0.4365,
1311
+ "step": 3720
1312
+ },
1313
+ {
1314
+ "epoch": 0.41495617441473426,
1315
+ "grad_norm": 1.359375,
1316
+ "learning_rate": 2.496714500245241e-05,
1317
+ "loss": 0.4309,
1318
+ "step": 3740
1319
+ },
1320
+ {
1321
+ "epoch": 0.41717519139021414,
1322
+ "grad_norm": 1.765625,
1323
+ "learning_rate": 2.4869080889095693e-05,
1324
+ "loss": 0.5378,
1325
+ "step": 3760
1326
+ },
1327
+ {
1328
+ "epoch": 0.419394208365694,
1329
+ "grad_norm": 1.75,
1330
+ "learning_rate": 2.477026729035595e-05,
1331
+ "loss": 0.4905,
1332
+ "step": 3780
1333
+ },
1334
+ {
1335
+ "epoch": 0.42161322534117385,
1336
+ "grad_norm": 1.859375,
1337
+ "learning_rate": 2.4670711710412026e-05,
1338
+ "loss": 0.4187,
1339
+ "step": 3800
1340
+ },
1341
+ {
1342
+ "epoch": 0.42383224231665373,
1343
+ "grad_norm": 1.9140625,
1344
+ "learning_rate": 2.457042170979086e-05,
1345
+ "loss": 0.4817,
1346
+ "step": 3820
1347
+ },
1348
+ {
1349
+ "epoch": 0.4260512592921336,
1350
+ "grad_norm": 1.6953125,
1351
+ "learning_rate": 2.4469404904793338e-05,
1352
+ "loss": 0.5108,
1353
+ "step": 3840
1354
+ },
1355
+ {
1356
+ "epoch": 0.42827027626761344,
1357
+ "grad_norm": 1.46875,
1358
+ "learning_rate": 2.4367668966915885e-05,
1359
+ "loss": 0.5112,
1360
+ "step": 3860
1361
+ },
1362
+ {
1363
+ "epoch": 0.4304892932430933,
1364
+ "grad_norm": 3.046875,
1365
+ "learning_rate": 2.4265221622267876e-05,
1366
+ "loss": 0.5353,
1367
+ "step": 3880
1368
+ },
1369
+ {
1370
+ "epoch": 0.43270831021857314,
1371
+ "grad_norm": 1.6640625,
1372
+ "learning_rate": 2.4162070650984893e-05,
1373
+ "loss": 0.4684,
1374
+ "step": 3900
1375
+ },
1376
+ {
1377
+ "epoch": 0.434927327194053,
1378
+ "grad_norm": 1.5078125,
1379
+ "learning_rate": 2.4058223886637872e-05,
1380
+ "loss": 0.4374,
1381
+ "step": 3920
1382
+ },
1383
+ {
1384
+ "epoch": 0.4371463441695329,
1385
+ "grad_norm": 1.6953125,
1386
+ "learning_rate": 2.3953689215638194e-05,
1387
+ "loss": 0.3753,
1388
+ "step": 3940
1389
+ },
1390
+ {
1391
+ "epoch": 0.43936536114501273,
1392
+ "grad_norm": 1.4921875,
1393
+ "learning_rate": 2.3848474576638807e-05,
1394
+ "loss": 0.4427,
1395
+ "step": 3960
1396
+ },
1397
+ {
1398
+ "epoch": 0.4415843781204926,
1399
+ "grad_norm": 1.25,
1400
+ "learning_rate": 2.3742587959931285e-05,
1401
+ "loss": 0.5074,
1402
+ "step": 3980
1403
+ },
1404
+ {
1405
+ "epoch": 0.4438033950959725,
1406
+ "grad_norm": 1.7265625,
1407
+ "learning_rate": 2.3636037406839076e-05,
1408
+ "loss": 0.4841,
1409
+ "step": 4000
1410
+ },
1411
+ {
1412
+ "epoch": 0.4460224120714523,
1413
+ "grad_norm": 1.8203125,
1414
+ "learning_rate": 2.3528831009106786e-05,
1415
+ "loss": 0.4643,
1416
+ "step": 4020
1417
+ },
1418
+ {
1419
+ "epoch": 0.4482414290469322,
1420
+ "grad_norm": 1.25,
1421
+ "learning_rate": 2.3420976908285687e-05,
1422
+ "loss": 0.4976,
1423
+ "step": 4040
1424
+ },
1425
+ {
1426
+ "epoch": 0.4504604460224121,
1427
+ "grad_norm": 1.828125,
1428
+ "learning_rate": 2.3312483295115424e-05,
1429
+ "loss": 0.5453,
1430
+ "step": 4060
1431
+ },
1432
+ {
1433
+ "epoch": 0.4526794629978919,
1434
+ "grad_norm": 2.921875,
1435
+ "learning_rate": 2.320335840890198e-05,
1436
+ "loss": 0.46,
1437
+ "step": 4080
1438
+ },
1439
+ {
1440
+ "epoch": 0.4548984799733718,
1441
+ "grad_norm": 2.03125,
1442
+ "learning_rate": 2.3093610536891965e-05,
1443
+ "loss": 0.5129,
1444
+ "step": 4100
1445
+ },
1446
+ {
1447
+ "epoch": 0.4571174969488517,
1448
+ "grad_norm": 1.4375,
1449
+ "learning_rate": 2.2983248013643253e-05,
1450
+ "loss": 0.4429,
1451
+ "step": 4120
1452
+ },
1453
+ {
1454
+ "epoch": 0.4593365139243315,
1455
+ "grad_norm": 2.03125,
1456
+ "learning_rate": 2.2872279220392054e-05,
1457
+ "loss": 0.4817,
1458
+ "step": 4140
1459
+ },
1460
+ {
1461
+ "epoch": 0.4615555308998114,
1462
+ "grad_norm": 1.8984375,
1463
+ "learning_rate": 2.2760712584416386e-05,
1464
+ "loss": 0.51,
1465
+ "step": 4160
1466
+ },
1467
+ {
1468
+ "epoch": 0.46377454787529127,
1469
+ "grad_norm": 1.2734375,
1470
+ "learning_rate": 2.2648556578396107e-05,
1471
+ "loss": 0.5001,
1472
+ "step": 4180
1473
+ },
1474
+ {
1475
+ "epoch": 0.4659935648507711,
1476
+ "grad_norm": 2.34375,
1477
+ "learning_rate": 2.2535819719769487e-05,
1478
+ "loss": 0.4739,
1479
+ "step": 4200
1480
+ },
1481
+ {
1482
+ "epoch": 0.468212581826251,
1483
+ "grad_norm": 1.484375,
1484
+ "learning_rate": 2.242251057008633e-05,
1485
+ "loss": 0.474,
1486
+ "step": 4220
1487
+ },
1488
+ {
1489
+ "epoch": 0.47043159880173085,
1490
+ "grad_norm": 1.7421875,
1491
+ "learning_rate": 2.2308637734357826e-05,
1492
+ "loss": 0.4622,
1493
+ "step": 4240
1494
+ },
1495
+ {
1496
+ "epoch": 0.4726506157772107,
1497
+ "grad_norm": 1.4296875,
1498
+ "learning_rate": 2.219420986040305e-05,
1499
+ "loss": 0.5075,
1500
+ "step": 4260
1501
+ },
1502
+ {
1503
+ "epoch": 0.47486963275269056,
1504
+ "grad_norm": 1.7734375,
1505
+ "learning_rate": 2.2079235638192203e-05,
1506
+ "loss": 0.4817,
1507
+ "step": 4280
1508
+ },
1509
+ {
1510
+ "epoch": 0.47708864972817044,
1511
+ "grad_norm": 1.3671875,
1512
+ "learning_rate": 2.1963723799186706e-05,
1513
+ "loss": 0.445,
1514
+ "step": 4300
1515
+ },
1516
+ {
1517
+ "epoch": 0.47930766670365027,
1518
+ "grad_norm": 1.6796875,
1519
+ "learning_rate": 2.184768311567608e-05,
1520
+ "loss": 0.475,
1521
+ "step": 4320
1522
+ },
1523
+ {
1524
+ "epoch": 0.48152668367913015,
1525
+ "grad_norm": 1.640625,
1526
+ "learning_rate": 2.1731122400111764e-05,
1527
+ "loss": 0.4418,
1528
+ "step": 4340
1529
+ },
1530
+ {
1531
+ "epoch": 0.48374570065461003,
1532
+ "grad_norm": 1.765625,
1533
+ "learning_rate": 2.161405050443789e-05,
1534
+ "loss": 0.4722,
1535
+ "step": 4360
1536
+ },
1537
+ {
1538
+ "epoch": 0.48596471763008986,
1539
+ "grad_norm": 1.75,
1540
+ "learning_rate": 2.1496476319419002e-05,
1541
+ "loss": 0.4814,
1542
+ "step": 4380
1543
+ },
1544
+ {
1545
+ "epoch": 0.48818373460556974,
1546
+ "grad_norm": 1.59375,
1547
+ "learning_rate": 2.137840877396491e-05,
1548
+ "loss": 0.5435,
1549
+ "step": 4400
1550
+ },
1551
+ {
1552
+ "epoch": 0.49040275158104957,
1553
+ "grad_norm": 1.734375,
1554
+ "learning_rate": 2.125985683445258e-05,
1555
+ "loss": 0.4521,
1556
+ "step": 4420
1557
+ },
1558
+ {
1559
+ "epoch": 0.49262176855652945,
1560
+ "grad_norm": 1.6640625,
1561
+ "learning_rate": 2.114082950404519e-05,
1562
+ "loss": 0.452,
1563
+ "step": 4440
1564
+ },
1565
+ {
1566
+ "epoch": 0.49484078553200933,
1567
+ "grad_norm": 1.2734375,
1568
+ "learning_rate": 2.1021335822008447e-05,
1569
+ "loss": 0.5176,
1570
+ "step": 4460
1571
+ },
1572
+ {
1573
+ "epoch": 0.49705980250748916,
1574
+ "grad_norm": 1.6328125,
1575
+ "learning_rate": 2.0901384863024078e-05,
1576
+ "loss": 0.4307,
1577
+ "step": 4480
1578
+ },
1579
+ {
1580
+ "epoch": 0.49927881948296904,
1581
+ "grad_norm": 1.6640625,
1582
+ "learning_rate": 2.0780985736500696e-05,
1583
+ "loss": 0.4856,
1584
+ "step": 4500
1585
+ },
1586
+ {
1587
+ "epoch": 0.5014978364584489,
1588
+ "grad_norm": 1.9609375,
1589
+ "learning_rate": 2.0660147585881994e-05,
1590
+ "loss": 0.4339,
1591
+ "step": 4520
1592
+ },
1593
+ {
1594
+ "epoch": 0.5037168534339288,
1595
+ "grad_norm": 2.046875,
1596
+ "learning_rate": 2.0538879587952382e-05,
1597
+ "loss": 0.4902,
1598
+ "step": 4540
1599
+ },
1600
+ {
1601
+ "epoch": 0.5059358704094087,
1602
+ "grad_norm": 1.8671875,
1603
+ "learning_rate": 2.0417190952140064e-05,
1604
+ "loss": 0.4343,
1605
+ "step": 4560
1606
+ },
1607
+ {
1608
+ "epoch": 0.5081548873848885,
1609
+ "grad_norm": 1.7265625,
1610
+ "learning_rate": 2.029509091981765e-05,
1611
+ "loss": 0.4416,
1612
+ "step": 4580
1613
+ },
1614
+ {
1615
+ "epoch": 0.5103739043603683,
1616
+ "grad_norm": 1.9375,
1617
+ "learning_rate": 2.0172588763600335e-05,
1618
+ "loss": 0.4802,
1619
+ "step": 4600
1620
+ },
1621
+ {
1622
+ "epoch": 0.5125929213358482,
1623
+ "grad_norm": 1.703125,
1624
+ "learning_rate": 2.0049693786641734e-05,
1625
+ "loss": 0.4794,
1626
+ "step": 4620
1627
+ },
1628
+ {
1629
+ "epoch": 0.5148119383113281,
1630
+ "grad_norm": 2.8125,
1631
+ "learning_rate": 1.9926415321927347e-05,
1632
+ "loss": 0.5092,
1633
+ "step": 4640
1634
+ },
1635
+ {
1636
+ "epoch": 0.517030955286808,
1637
+ "grad_norm": 1.3984375,
1638
+ "learning_rate": 1.980276273156581e-05,
1639
+ "loss": 0.4595,
1640
+ "step": 4660
1641
+ },
1642
+ {
1643
+ "epoch": 0.5192499722622878,
1644
+ "grad_norm": 1.484375,
1645
+ "learning_rate": 1.9678745406077886e-05,
1646
+ "loss": 0.452,
1647
+ "step": 4680
1648
+ },
1649
+ {
1650
+ "epoch": 0.5214689892377676,
1651
+ "grad_norm": 1.703125,
1652
+ "learning_rate": 1.9554372763683337e-05,
1653
+ "loss": 0.4528,
1654
+ "step": 4700
1655
+ },
1656
+ {
1657
+ "epoch": 0.5236880062132475,
1658
+ "grad_norm": 1.5,
1659
+ "learning_rate": 1.9429654249585684e-05,
1660
+ "loss": 0.4743,
1661
+ "step": 4720
1662
+ },
1663
+ {
1664
+ "epoch": 0.5259070231887274,
1665
+ "grad_norm": 1.5703125,
1666
+ "learning_rate": 1.9304599335254894e-05,
1667
+ "loss": 0.4476,
1668
+ "step": 4740
1669
+ },
1670
+ {
1671
+ "epoch": 0.5281260401642073,
1672
+ "grad_norm": 1.546875,
1673
+ "learning_rate": 1.9179217517708117e-05,
1674
+ "loss": 0.447,
1675
+ "step": 4760
1676
+ },
1677
+ {
1678
+ "epoch": 0.5303450571396872,
1679
+ "grad_norm": 1.625,
1680
+ "learning_rate": 1.9053518318788428e-05,
1681
+ "loss": 0.4606,
1682
+ "step": 4780
1683
+ },
1684
+ {
1685
+ "epoch": 0.5325640741151669,
1686
+ "grad_norm": 1.6875,
1687
+ "learning_rate": 1.8927511284441722e-05,
1688
+ "loss": 0.4561,
1689
+ "step": 4800
1690
+ },
1691
+ {
1692
+ "epoch": 0.5347830910906468,
1693
+ "grad_norm": 1.8359375,
1694
+ "learning_rate": 1.880120598399178e-05,
1695
+ "loss": 0.4522,
1696
+ "step": 4820
1697
+ },
1698
+ {
1699
+ "epoch": 0.5370021080661267,
1700
+ "grad_norm": 1.9921875,
1701
+ "learning_rate": 1.8674612009413536e-05,
1702
+ "loss": 0.4943,
1703
+ "step": 4840
1704
+ },
1705
+ {
1706
+ "epoch": 0.5392211250416066,
1707
+ "grad_norm": 1.703125,
1708
+ "learning_rate": 1.8547738974604623e-05,
1709
+ "loss": 0.5822,
1710
+ "step": 4860
1711
+ },
1712
+ {
1713
+ "epoch": 0.5414401420170865,
1714
+ "grad_norm": 1.7734375,
1715
+ "learning_rate": 1.842059651465531e-05,
1716
+ "loss": 0.4273,
1717
+ "step": 4880
1718
+ },
1719
+ {
1720
+ "epoch": 0.5436591589925663,
1721
+ "grad_norm": 1.6953125,
1722
+ "learning_rate": 1.829319428511673e-05,
1723
+ "loss": 0.4704,
1724
+ "step": 4900
1725
+ },
1726
+ {
1727
+ "epoch": 0.5458781759680461,
1728
+ "grad_norm": 1.671875,
1729
+ "learning_rate": 1.816554196126767e-05,
1730
+ "loss": 0.5452,
1731
+ "step": 4920
1732
+ },
1733
+ {
1734
+ "epoch": 0.548097192943526,
1735
+ "grad_norm": 1.8203125,
1736
+ "learning_rate": 1.803764923737974e-05,
1737
+ "loss": 0.436,
1738
+ "step": 4940
1739
+ },
1740
+ {
1741
+ "epoch": 0.5503162099190059,
1742
+ "grad_norm": 1.7578125,
1743
+ "learning_rate": 1.7909525825981214e-05,
1744
+ "loss": 0.4518,
1745
+ "step": 4960
1746
+ },
1747
+ {
1748
+ "epoch": 0.5525352268944858,
1749
+ "grad_norm": 2.03125,
1750
+ "learning_rate": 1.778118145711942e-05,
1751
+ "loss": 0.4138,
1752
+ "step": 4980
1753
+ },
1754
+ {
1755
+ "epoch": 0.5547542438699656,
1756
+ "grad_norm": 2.46875,
1757
+ "learning_rate": 1.7652625877621793e-05,
1758
+ "loss": 0.4332,
1759
+ "step": 5000
1760
+ },
1761
+ {
1762
+ "epoch": 0.5569732608454455,
1763
+ "grad_norm": 2.09375,
1764
+ "learning_rate": 1.7523868850355704e-05,
1765
+ "loss": 0.4842,
1766
+ "step": 5020
1767
+ },
1768
+ {
1769
+ "epoch": 0.5591922778209253,
1770
+ "grad_norm": 1.6328125,
1771
+ "learning_rate": 1.7394920153487022e-05,
1772
+ "loss": 0.4935,
1773
+ "step": 5040
1774
+ },
1775
+ {
1776
+ "epoch": 0.5614112947964052,
1777
+ "grad_norm": 1.6953125,
1778
+ "learning_rate": 1.7265789579737528e-05,
1779
+ "loss": 0.5129,
1780
+ "step": 5060
1781
+ },
1782
+ {
1783
+ "epoch": 0.563630311771885,
1784
+ "grad_norm": 1.65625,
1785
+ "learning_rate": 1.7136486935641256e-05,
1786
+ "loss": 0.4281,
1787
+ "step": 5080
1788
+ },
1789
+ {
1790
+ "epoch": 0.5658493287473649,
1791
+ "grad_norm": 2.015625,
1792
+ "learning_rate": 1.7007022040799726e-05,
1793
+ "loss": 0.4634,
1794
+ "step": 5100
1795
+ },
1796
+ {
1797
+ "epoch": 0.5680683457228448,
1798
+ "grad_norm": 2.15625,
1799
+ "learning_rate": 1.687740472713623e-05,
1800
+ "loss": 0.5225,
1801
+ "step": 5120
1802
+ },
1803
+ {
1804
+ "epoch": 0.5702873626983247,
1805
+ "grad_norm": 1.9921875,
1806
+ "learning_rate": 1.674764483814918e-05,
1807
+ "loss": 0.4838,
1808
+ "step": 5140
1809
+ },
1810
+ {
1811
+ "epoch": 0.5725063796738045,
1812
+ "grad_norm": 1.7421875,
1813
+ "learning_rate": 1.661775222816453e-05,
1814
+ "loss": 0.4291,
1815
+ "step": 5160
1816
+ },
1817
+ {
1818
+ "epoch": 0.5747253966492843,
1819
+ "grad_norm": 1.671875,
1820
+ "learning_rate": 1.648773676158747e-05,
1821
+ "loss": 0.3925,
1822
+ "step": 5180
1823
+ },
1824
+ {
1825
+ "epoch": 0.5769444136247642,
1826
+ "grad_norm": 1.734375,
1827
+ "learning_rate": 1.6357608312153223e-05,
1828
+ "loss": 0.4385,
1829
+ "step": 5200
1830
+ },
1831
+ {
1832
+ "epoch": 0.5791634306002441,
1833
+ "grad_norm": 1.71875,
1834
+ "learning_rate": 1.6227376762177272e-05,
1835
+ "loss": 0.4144,
1836
+ "step": 5220
1837
+ },
1838
+ {
1839
+ "epoch": 0.581382447575724,
1840
+ "grad_norm": 2.71875,
1841
+ "learning_rate": 1.6097052001804825e-05,
1842
+ "loss": 0.5116,
1843
+ "step": 5240
1844
+ },
1845
+ {
1846
+ "epoch": 0.5836014645512038,
1847
+ "grad_norm": 1.953125,
1848
+ "learning_rate": 1.5966643928259753e-05,
1849
+ "loss": 0.4869,
1850
+ "step": 5260
1851
+ },
1852
+ {
1853
+ "epoch": 0.5858204815266836,
1854
+ "grad_norm": 1.9140625,
1855
+ "learning_rate": 1.5836162445092963e-05,
1856
+ "loss": 0.4644,
1857
+ "step": 5280
1858
+ },
1859
+ {
1860
+ "epoch": 0.5880394985021635,
1861
+ "grad_norm": 1.8203125,
1862
+ "learning_rate": 1.5705617461430282e-05,
1863
+ "loss": 0.3844,
1864
+ "step": 5300
1865
+ },
1866
+ {
1867
+ "epoch": 0.5902585154776434,
1868
+ "grad_norm": 1.75,
1869
+ "learning_rate": 1.5575018891219944e-05,
1870
+ "loss": 0.4233,
1871
+ "step": 5320
1872
+ },
1873
+ {
1874
+ "epoch": 0.5924775324531233,
1875
+ "grad_norm": 1.140625,
1876
+ "learning_rate": 1.5444376652479706e-05,
1877
+ "loss": 0.5273,
1878
+ "step": 5340
1879
+ },
1880
+ {
1881
+ "epoch": 0.5946965494286032,
1882
+ "grad_norm": 1.921875,
1883
+ "learning_rate": 1.531370066654362e-05,
1884
+ "loss": 0.4783,
1885
+ "step": 5360
1886
+ },
1887
+ {
1888
+ "epoch": 0.5969155664040829,
1889
+ "grad_norm": 1.796875,
1890
+ "learning_rate": 1.5183000857308604e-05,
1891
+ "loss": 0.4747,
1892
+ "step": 5380
1893
+ },
1894
+ {
1895
+ "epoch": 0.5991345833795628,
1896
+ "grad_norm": 1.6484375,
1897
+ "learning_rate": 1.5052287150480774e-05,
1898
+ "loss": 0.4335,
1899
+ "step": 5400
1900
+ },
1901
+ {
1902
+ "epoch": 0.6013536003550427,
1903
+ "grad_norm": 1.75,
1904
+ "learning_rate": 1.4921569472821673e-05,
1905
+ "loss": 0.4489,
1906
+ "step": 5420
1907
+ },
1908
+ {
1909
+ "epoch": 0.6035726173305226,
1910
+ "grad_norm": 2.21875,
1911
+ "learning_rate": 1.4790857751394398e-05,
1912
+ "loss": 0.4495,
1913
+ "step": 5440
1914
+ },
1915
+ {
1916
+ "epoch": 0.6057916343060025,
1917
+ "grad_norm": 1.5703125,
1918
+ "learning_rate": 1.4660161912809718e-05,
1919
+ "loss": 0.4516,
1920
+ "step": 5460
1921
+ },
1922
+ {
1923
+ "epoch": 0.6080106512814824,
1924
+ "grad_norm": 1.4765625,
1925
+ "learning_rate": 1.4529491882472209e-05,
1926
+ "loss": 0.4418,
1927
+ "step": 5480
1928
+ },
1929
+ {
1930
+ "epoch": 0.6102296682569621,
1931
+ "grad_norm": 1.6015625,
1932
+ "learning_rate": 1.4398857583826501e-05,
1933
+ "loss": 0.4701,
1934
+ "step": 5500
1935
+ },
1936
+ {
1937
+ "epoch": 0.612448685232442,
1938
+ "grad_norm": 2.390625,
1939
+ "learning_rate": 1.4268268937603659e-05,
1940
+ "loss": 0.4957,
1941
+ "step": 5520
1942
+ },
1943
+ {
1944
+ "epoch": 0.6146677022079219,
1945
+ "grad_norm": 1.7421875,
1946
+ "learning_rate": 1.413773586106777e-05,
1947
+ "loss": 0.5176,
1948
+ "step": 5540
1949
+ },
1950
+ {
1951
+ "epoch": 0.6168867191834018,
1952
+ "grad_norm": 1.8125,
1953
+ "learning_rate": 1.400726826726282e-05,
1954
+ "loss": 0.4252,
1955
+ "step": 5560
1956
+ },
1957
+ {
1958
+ "epoch": 0.6191057361588816,
1959
+ "grad_norm": 1.4453125,
1960
+ "learning_rate": 1.3876876064259836e-05,
1961
+ "loss": 0.473,
1962
+ "step": 5580
1963
+ },
1964
+ {
1965
+ "epoch": 0.6213247531343615,
1966
+ "grad_norm": 1.6796875,
1967
+ "learning_rate": 1.3746569154404477e-05,
1968
+ "loss": 0.4589,
1969
+ "step": 5600
1970
+ },
1971
+ {
1972
+ "epoch": 0.6235437701098413,
1973
+ "grad_norm": 2.734375,
1974
+ "learning_rate": 1.3616357433564993e-05,
1975
+ "loss": 0.4083,
1976
+ "step": 5620
1977
+ },
1978
+ {
1979
+ "epoch": 0.6257627870853212,
1980
+ "grad_norm": 1.75,
1981
+ "learning_rate": 1.348625079038071e-05,
1982
+ "loss": 0.4638,
1983
+ "step": 5640
1984
+ },
1985
+ {
1986
+ "epoch": 0.6279818040608011,
1987
+ "grad_norm": 2.0625,
1988
+ "learning_rate": 1.335625910551108e-05,
1989
+ "loss": 0.4703,
1990
+ "step": 5660
1991
+ },
1992
+ {
1993
+ "epoch": 0.630200821036281,
1994
+ "grad_norm": 1.7109375,
1995
+ "learning_rate": 1.3226392250885288e-05,
1996
+ "loss": 0.4683,
1997
+ "step": 5680
1998
+ },
1999
+ {
2000
+ "epoch": 0.6324198380117608,
2001
+ "grad_norm": 1.2265625,
2002
+ "learning_rate": 1.3096660088952581e-05,
2003
+ "loss": 0.4641,
2004
+ "step": 5700
2005
+ },
2006
+ {
2007
+ "epoch": 0.6346388549872406,
2008
+ "grad_norm": 1.6953125,
2009
+ "learning_rate": 1.2967072471933255e-05,
2010
+ "loss": 0.4324,
2011
+ "step": 5720
2012
+ },
2013
+ {
2014
+ "epoch": 0.6368578719627205,
2015
+ "grad_norm": 1.6953125,
2016
+ "learning_rate": 1.283763924107046e-05,
2017
+ "loss": 0.5183,
2018
+ "step": 5740
2019
+ },
2020
+ {
2021
+ "epoch": 0.6390768889382004,
2022
+ "grad_norm": 1.4921875,
2023
+ "learning_rate": 1.2708370225882848e-05,
2024
+ "loss": 0.4178,
2025
+ "step": 5760
2026
+ },
2027
+ {
2028
+ "epoch": 0.6412959059136802,
2029
+ "grad_norm": 2.046875,
2030
+ "learning_rate": 1.2579275243418074e-05,
2031
+ "loss": 0.4503,
2032
+ "step": 5780
2033
+ },
2034
+ {
2035
+ "epoch": 0.6435149228891601,
2036
+ "grad_norm": 1.21875,
2037
+ "learning_rate": 1.245036409750725e-05,
2038
+ "loss": 0.4796,
2039
+ "step": 5800
2040
+ },
2041
+ {
2042
+ "epoch": 0.64573393986464,
2043
+ "grad_norm": 1.6015625,
2044
+ "learning_rate": 1.2321646578020452e-05,
2045
+ "loss": 0.4437,
2046
+ "step": 5820
2047
+ },
2048
+ {
2049
+ "epoch": 0.6479529568401198,
2050
+ "grad_norm": 2.09375,
2051
+ "learning_rate": 1.219313246012321e-05,
2052
+ "loss": 0.4504,
2053
+ "step": 5840
2054
+ },
2055
+ {
2056
+ "epoch": 0.6501719738155997,
2057
+ "grad_norm": 1.2265625,
2058
+ "learning_rate": 1.2064831503534185e-05,
2059
+ "loss": 0.5122,
2060
+ "step": 5860
2061
+ },
2062
+ {
2063
+ "epoch": 0.6523909907910795,
2064
+ "grad_norm": 1.7890625,
2065
+ "learning_rate": 1.1936753451783973e-05,
2066
+ "loss": 0.4294,
2067
+ "step": 5880
2068
+ },
2069
+ {
2070
+ "epoch": 0.6546100077665594,
2071
+ "grad_norm": 2.296875,
2072
+ "learning_rate": 1.1808908031475151e-05,
2073
+ "loss": 0.4895,
2074
+ "step": 5900
2075
+ },
2076
+ {
2077
+ "epoch": 0.6568290247420393,
2078
+ "grad_norm": 1.140625,
2079
+ "learning_rate": 1.1681304951543635e-05,
2080
+ "loss": 0.4824,
2081
+ "step": 5920
2082
+ },
2083
+ {
2084
+ "epoch": 0.6590480417175192,
2085
+ "grad_norm": 1.875,
2086
+ "learning_rate": 1.1553953902521321e-05,
2087
+ "loss": 0.525,
2088
+ "step": 5940
2089
+ },
2090
+ {
2091
+ "epoch": 0.661267058692999,
2092
+ "grad_norm": 1.8359375,
2093
+ "learning_rate": 1.1426864555800195e-05,
2094
+ "loss": 0.4289,
2095
+ "step": 5960
2096
+ },
2097
+ {
2098
+ "epoch": 0.6634860756684788,
2099
+ "grad_norm": 1.9375,
2100
+ "learning_rate": 1.1300046562897837e-05,
2101
+ "loss": 0.4695,
2102
+ "step": 5980
2103
+ },
2104
+ {
2105
+ "epoch": 0.6657050926439587,
2106
+ "grad_norm": 1.7109375,
2107
+ "learning_rate": 1.1173509554724461e-05,
2108
+ "loss": 0.465,
2109
+ "step": 6000
2110
+ },
2111
+ {
2112
+ "epoch": 0.6679241096194386,
2113
+ "grad_norm": 1.5625,
2114
+ "learning_rate": 1.104726314085153e-05,
2115
+ "loss": 0.4641,
2116
+ "step": 6020
2117
+ },
2118
+ {
2119
+ "epoch": 0.6701431265949185,
2120
+ "grad_norm": 1.84375,
2121
+ "learning_rate": 1.0921316908781965e-05,
2122
+ "loss": 0.4559,
2123
+ "step": 6040
2124
+ },
2125
+ {
2126
+ "epoch": 0.6723621435703984,
2127
+ "grad_norm": 1.4375,
2128
+ "learning_rate": 1.079568042322205e-05,
2129
+ "loss": 0.4938,
2130
+ "step": 6060
2131
+ },
2132
+ {
2133
+ "epoch": 0.6745811605458781,
2134
+ "grad_norm": 1.2734375,
2135
+ "learning_rate": 1.0670363225355054e-05,
2136
+ "loss": 0.4247,
2137
+ "step": 6080
2138
+ },
2139
+ {
2140
+ "epoch": 0.676800177521358,
2141
+ "grad_norm": 1.5390625,
2142
+ "learning_rate": 1.0545374832116658e-05,
2143
+ "loss": 0.4739,
2144
+ "step": 6100
2145
+ },
2146
+ {
2147
+ "epoch": 0.6790191944968379,
2148
+ "grad_norm": 1.640625,
2149
+ "learning_rate": 1.042072473547221e-05,
2150
+ "loss": 0.4923,
2151
+ "step": 6120
2152
+ },
2153
+ {
2154
+ "epoch": 0.6812382114723178,
2155
+ "grad_norm": 1.5,
2156
+ "learning_rate": 1.0296422401695867e-05,
2157
+ "loss": 0.5248,
2158
+ "step": 6140
2159
+ },
2160
+ {
2161
+ "epoch": 0.6834572284477977,
2162
+ "grad_norm": 1.5390625,
2163
+ "learning_rate": 1.017247727065172e-05,
2164
+ "loss": 0.4336,
2165
+ "step": 6160
2166
+ },
2167
+ {
2168
+ "epoch": 0.6856762454232775,
2169
+ "grad_norm": 1.7265625,
2170
+ "learning_rate": 1.0048898755076885e-05,
2171
+ "loss": 0.4915,
2172
+ "step": 6180
2173
+ },
2174
+ {
2175
+ "epoch": 0.6878952623987573,
2176
+ "grad_norm": 1.515625,
2177
+ "learning_rate": 9.925696239866679e-06,
2178
+ "loss": 0.4908,
2179
+ "step": 6200
2180
+ },
2181
+ {
2182
+ "epoch": 0.6901142793742372,
2183
+ "grad_norm": 1.4375,
2184
+ "learning_rate": 9.802879081361927e-06,
2185
+ "loss": 0.4512,
2186
+ "step": 6220
2187
+ },
2188
+ {
2189
+ "epoch": 0.6923332963497171,
2190
+ "grad_norm": 2.21875,
2191
+ "learning_rate": 9.680456606638376e-06,
2192
+ "loss": 0.4356,
2193
+ "step": 6240
2194
+ },
2195
+ {
2196
+ "epoch": 0.694552313325197,
2197
+ "grad_norm": 1.796875,
2198
+ "learning_rate": 9.558438112798397e-06,
2199
+ "loss": 0.4321,
2200
+ "step": 6260
2201
+ },
2202
+ {
2203
+ "epoch": 0.6967713303006768,
2204
+ "grad_norm": 1.421875,
2205
+ "learning_rate": 9.436832866264942e-06,
2206
+ "loss": 0.4288,
2207
+ "step": 6280
2208
+ },
2209
+ {
2210
+ "epoch": 0.6989903472761566,
2211
+ "grad_norm": 2.140625,
2212
+ "learning_rate": 9.3156501020778e-06,
2213
+ "loss": 0.4119,
2214
+ "step": 6300
2215
+ },
2216
+ {
2217
+ "epoch": 0.7012093642516365,
2218
+ "grad_norm": 1.7421875,
2219
+ "learning_rate": 9.194899023192295e-06,
2220
+ "loss": 0.4729,
2221
+ "step": 6320
2222
+ },
2223
+ {
2224
+ "epoch": 0.7034283812271164,
2225
+ "grad_norm": 2.03125,
2226
+ "learning_rate": 9.074588799780359e-06,
2227
+ "loss": 0.4438,
2228
+ "step": 6340
2229
+ },
2230
+ {
2231
+ "epoch": 0.7056473982025963,
2232
+ "grad_norm": 1.703125,
2233
+ "learning_rate": 8.95472856853414e-06,
2234
+ "loss": 0.4509,
2235
+ "step": 6360
2236
+ },
2237
+ {
2238
+ "epoch": 0.7078664151780761,
2239
+ "grad_norm": 1.453125,
2240
+ "learning_rate": 8.835327431972136e-06,
2241
+ "loss": 0.4812,
2242
+ "step": 6380
2243
+ },
2244
+ {
2245
+ "epoch": 0.710085432153556,
2246
+ "grad_norm": 1.4375,
2247
+ "learning_rate": 8.716394457747915e-06,
2248
+ "loss": 0.4796,
2249
+ "step": 6400
2250
+ },
2251
+ {
2252
+ "epoch": 0.7123044491290358,
2253
+ "grad_norm": 0.9375,
2254
+ "learning_rate": 8.597938677961505e-06,
2255
+ "loss": 0.4138,
2256
+ "step": 6420
2257
+ },
2258
+ {
2259
+ "epoch": 0.7145234661045157,
2260
+ "grad_norm": 1.71875,
2261
+ "learning_rate": 8.479969088473462e-06,
2262
+ "loss": 0.4161,
2263
+ "step": 6440
2264
+ },
2265
+ {
2266
+ "epoch": 0.7167424830799956,
2267
+ "grad_norm": 2.203125,
2268
+ "learning_rate": 8.362494648221697e-06,
2269
+ "loss": 0.4685,
2270
+ "step": 6460
2271
+ },
2272
+ {
2273
+ "epoch": 0.7189615000554754,
2274
+ "grad_norm": 1.6875,
2275
+ "learning_rate": 8.245524278541116e-06,
2276
+ "loss": 0.4476,
2277
+ "step": 6480
2278
+ },
2279
+ {
2280
+ "epoch": 0.7211805170309553,
2281
+ "grad_norm": 1.671875,
2282
+ "learning_rate": 8.129066862486115e-06,
2283
+ "loss": 0.5104,
2284
+ "step": 6500
2285
+ },
2286
+ {
2287
+ "epoch": 0.7233995340064352,
2288
+ "grad_norm": 1.5625,
2289
+ "learning_rate": 8.013131244155964e-06,
2290
+ "loss": 0.4467,
2291
+ "step": 6520
2292
+ },
2293
+ {
2294
+ "epoch": 0.725618550981915,
2295
+ "grad_norm": 2.234375,
2296
+ "learning_rate": 7.89772622802316e-06,
2297
+ "loss": 0.4317,
2298
+ "step": 6540
2299
+ },
2300
+ {
2301
+ "epoch": 0.7278375679573948,
2302
+ "grad_norm": 2.109375,
2303
+ "learning_rate": 7.782860578264806e-06,
2304
+ "loss": 0.4398,
2305
+ "step": 6560
2306
+ },
2307
+ {
2308
+ "epoch": 0.7300565849328747,
2309
+ "grad_norm": 1.6875,
2310
+ "learning_rate": 7.668543018097014e-06,
2311
+ "loss": 0.5054,
2312
+ "step": 6580
2313
+ },
2314
+ {
2315
+ "epoch": 0.7322756019083546,
2316
+ "grad_norm": 1.4453125,
2317
+ "learning_rate": 7.5547822291124715e-06,
2318
+ "loss": 0.4968,
2319
+ "step": 6600
2320
+ },
2321
+ {
2322
+ "epoch": 0.7344946188838345,
2323
+ "grad_norm": 1.5,
2324
+ "learning_rate": 7.441586850621102e-06,
2325
+ "loss": 0.4202,
2326
+ "step": 6620
2327
+ },
2328
+ {
2329
+ "epoch": 0.7367136358593144,
2330
+ "grad_norm": 1.765625,
2331
+ "learning_rate": 7.328965478993994e-06,
2332
+ "loss": 0.4447,
2333
+ "step": 6640
2334
+ },
2335
+ {
2336
+ "epoch": 0.7389326528347941,
2337
+ "grad_norm": 1.90625,
2338
+ "learning_rate": 7.2169266670105555e-06,
2339
+ "loss": 0.4869,
2340
+ "step": 6660
2341
+ },
2342
+ {
2343
+ "epoch": 0.741151669810274,
2344
+ "grad_norm": 1.3203125,
2345
+ "learning_rate": 7.105478923209001e-06,
2346
+ "loss": 0.4744,
2347
+ "step": 6680
2348
+ },
2349
+ {
2350
+ "epoch": 0.7433706867857539,
2351
+ "grad_norm": 0.76171875,
2352
+ "learning_rate": 6.994630711240201e-06,
2353
+ "loss": 0.4054,
2354
+ "step": 6700
2355
+ },
2356
+ {
2357
+ "epoch": 0.7455897037612338,
2358
+ "grad_norm": 1.9765625,
2359
+ "learning_rate": 6.884390449224898e-06,
2360
+ "loss": 0.4307,
2361
+ "step": 6720
2362
+ },
2363
+ {
2364
+ "epoch": 0.7478087207367137,
2365
+ "grad_norm": 1.921875,
2366
+ "learning_rate": 6.774766509114435e-06,
2367
+ "loss": 0.4728,
2368
+ "step": 6740
2369
+ },
2370
+ {
2371
+ "epoch": 0.7500277377121934,
2372
+ "grad_norm": 1.53125,
2373
+ "learning_rate": 6.66576721605496e-06,
2374
+ "loss": 0.4254,
2375
+ "step": 6760
2376
+ },
2377
+ {
2378
+ "epoch": 0.7522467546876733,
2379
+ "grad_norm": 1.78125,
2380
+ "learning_rate": 6.557400847755183e-06,
2381
+ "loss": 0.4508,
2382
+ "step": 6780
2383
+ },
2384
+ {
2385
+ "epoch": 0.7544657716631532,
2386
+ "grad_norm": 1.828125,
2387
+ "learning_rate": 6.449675633857772e-06,
2388
+ "loss": 0.4814,
2389
+ "step": 6800
2390
+ },
2391
+ {
2392
+ "epoch": 0.7566847886386331,
2393
+ "grad_norm": 1.578125,
2394
+ "learning_rate": 6.3425997553143315e-06,
2395
+ "loss": 0.459,
2396
+ "step": 6820
2397
+ },
2398
+ {
2399
+ "epoch": 0.758903805614113,
2400
+ "grad_norm": 1.7421875,
2401
+ "learning_rate": 6.236181343764144e-06,
2402
+ "loss": 0.464,
2403
+ "step": 6840
2404
+ },
2405
+ {
2406
+ "epoch": 0.7611228225895929,
2407
+ "grad_norm": 2.21875,
2408
+ "learning_rate": 6.130428480916626e-06,
2409
+ "loss": 0.4897,
2410
+ "step": 6860
2411
+ },
2412
+ {
2413
+ "epoch": 0.7633418395650726,
2414
+ "grad_norm": 1.5625,
2415
+ "learning_rate": 6.025349197937577e-06,
2416
+ "loss": 0.4614,
2417
+ "step": 6880
2418
+ },
2419
+ {
2420
+ "epoch": 0.7655608565405525,
2421
+ "grad_norm": 1.71875,
2422
+ "learning_rate": 5.920951474839266e-06,
2423
+ "loss": 0.444,
2424
+ "step": 6900
2425
+ },
2426
+ {
2427
+ "epoch": 0.7677798735160324,
2428
+ "grad_norm": 1.1640625,
2429
+ "learning_rate": 5.817243239874434e-06,
2430
+ "loss": 0.4649,
2431
+ "step": 6920
2432
+ },
2433
+ {
2434
+ "epoch": 0.7699988904915123,
2435
+ "grad_norm": 1.8046875,
2436
+ "learning_rate": 5.714232368934163e-06,
2437
+ "loss": 0.4758,
2438
+ "step": 6940
2439
+ },
2440
+ {
2441
+ "epoch": 0.7722179074669921,
2442
+ "grad_norm": 2.15625,
2443
+ "learning_rate": 5.611926684949779e-06,
2444
+ "loss": 0.4519,
2445
+ "step": 6960
2446
+ },
2447
+ {
2448
+ "epoch": 0.774436924442472,
2449
+ "grad_norm": 1.5234375,
2450
+ "learning_rate": 5.510333957298756e-06,
2451
+ "loss": 0.4729,
2452
+ "step": 6980
2453
+ },
2454
+ {
2455
+ "epoch": 0.7766559414179518,
2456
+ "grad_norm": 1.28125,
2457
+ "learning_rate": 5.409461901214679e-06,
2458
+ "loss": 0.4557,
2459
+ "step": 7000
2460
+ },
2461
+ {
2462
+ "epoch": 0.7788749583934317,
2463
+ "grad_norm": 1.2265625,
2464
+ "learning_rate": 5.3093181772013545e-06,
2465
+ "loss": 0.4433,
2466
+ "step": 7020
2467
+ },
2468
+ {
2469
+ "epoch": 0.7810939753689116,
2470
+ "grad_norm": 1.4375,
2471
+ "learning_rate": 5.209910390451007e-06,
2472
+ "loss": 0.4767,
2473
+ "step": 7040
2474
+ },
2475
+ {
2476
+ "epoch": 0.7833129923443914,
2477
+ "grad_norm": 2.140625,
2478
+ "learning_rate": 5.111246090266763e-06,
2479
+ "loss": 0.4422,
2480
+ "step": 7060
2481
+ },
2482
+ {
2483
+ "epoch": 0.7855320093198713,
2484
+ "grad_norm": 1.7265625,
2485
+ "learning_rate": 5.0133327694893035e-06,
2486
+ "loss": 0.4276,
2487
+ "step": 7080
2488
+ },
2489
+ {
2490
+ "epoch": 0.7877510262953512,
2491
+ "grad_norm": 1.5859375,
2492
+ "learning_rate": 4.916177863927856e-06,
2493
+ "loss": 0.482,
2494
+ "step": 7100
2495
+ },
2496
+ {
2497
+ "epoch": 0.789970043270831,
2498
+ "grad_norm": 1.71875,
2499
+ "learning_rate": 4.819788751795485e-06,
2500
+ "loss": 0.4817,
2501
+ "step": 7120
2502
+ },
2503
+ {
2504
+ "epoch": 0.7921890602463109,
2505
+ "grad_norm": 1.6484375,
2506
+ "learning_rate": 4.7241727531487925e-06,
2507
+ "loss": 0.4702,
2508
+ "step": 7140
2509
+ },
2510
+ {
2511
+ "epoch": 0.7944080772217907,
2512
+ "grad_norm": 1.9296875,
2513
+ "learning_rate": 4.629337129331983e-06,
2514
+ "loss": 0.4494,
2515
+ "step": 7160
2516
+ },
2517
+ {
2518
+ "epoch": 0.7966270941972706,
2519
+ "grad_norm": 1.9453125,
2520
+ "learning_rate": 4.535289082425438e-06,
2521
+ "loss": 0.4411,
2522
+ "step": 7180
2523
+ },
2524
+ {
2525
+ "epoch": 0.7988461111727505,
2526
+ "grad_norm": 2.015625,
2527
+ "learning_rate": 4.442035754698759e-06,
2528
+ "loss": 0.4671,
2529
+ "step": 7200
2530
+ },
2531
+ {
2532
+ "epoch": 0.8010651281482304,
2533
+ "grad_norm": 2.359375,
2534
+ "learning_rate": 4.349584228068369e-06,
2535
+ "loss": 0.4077,
2536
+ "step": 7220
2537
+ },
2538
+ {
2539
+ "epoch": 0.8032841451237102,
2540
+ "grad_norm": 1.3984375,
2541
+ "learning_rate": 4.257941523559703e-06,
2542
+ "loss": 0.5378,
2543
+ "step": 7240
2544
+ },
2545
+ {
2546
+ "epoch": 0.80550316209919,
2547
+ "grad_norm": 1.84375,
2548
+ "learning_rate": 4.167114600773983e-06,
2549
+ "loss": 0.4719,
2550
+ "step": 7260
2551
+ },
2552
+ {
2553
+ "epoch": 0.8077221790746699,
2554
+ "grad_norm": 1.140625,
2555
+ "learning_rate": 4.0771103573597125e-06,
2556
+ "loss": 0.4596,
2557
+ "step": 7280
2558
+ },
2559
+ {
2560
+ "epoch": 0.8099411960501498,
2561
+ "grad_norm": 1.5703125,
2562
+ "learning_rate": 3.987935628488841e-06,
2563
+ "loss": 0.4812,
2564
+ "step": 7300
2565
+ },
2566
+ {
2567
+ "epoch": 0.8121602130256297,
2568
+ "grad_norm": 1.65625,
2569
+ "learning_rate": 3.899597186337676e-06,
2570
+ "loss": 0.4636,
2571
+ "step": 7320
2572
+ },
2573
+ {
2574
+ "epoch": 0.8143792300011095,
2575
+ "grad_norm": 1.609375,
2576
+ "learning_rate": 3.812101739572605e-06,
2577
+ "loss": 0.4605,
2578
+ "step": 7340
2579
+ },
2580
+ {
2581
+ "epoch": 0.8165982469765893,
2582
+ "grad_norm": 2.09375,
2583
+ "learning_rate": 3.725455932840593e-06,
2584
+ "loss": 0.4368,
2585
+ "step": 7360
2586
+ },
2587
+ {
2588
+ "epoch": 0.8188172639520692,
2589
+ "grad_norm": 1.8125,
2590
+ "learning_rate": 3.6396663462645917e-06,
2591
+ "loss": 0.4686,
2592
+ "step": 7380
2593
+ },
2594
+ {
2595
+ "epoch": 0.8210362809275491,
2596
+ "grad_norm": 1.875,
2597
+ "learning_rate": 3.554739494943813e-06,
2598
+ "loss": 0.4701,
2599
+ "step": 7400
2600
+ },
2601
+ {
2602
+ "epoch": 0.823255297903029,
2603
+ "grad_norm": 1.8984375,
2604
+ "learning_rate": 3.470681828458962e-06,
2605
+ "loss": 0.4595,
2606
+ "step": 7420
2607
+ },
2608
+ {
2609
+ "epoch": 0.8254743148785089,
2610
+ "grad_norm": 1.328125,
2611
+ "learning_rate": 3.3874997303824416e-06,
2612
+ "loss": 0.4265,
2613
+ "step": 7440
2614
+ },
2615
+ {
2616
+ "epoch": 0.8276933318539886,
2617
+ "grad_norm": 1.5,
2618
+ "learning_rate": 3.305199517793557e-06,
2619
+ "loss": 0.4927,
2620
+ "step": 7460
2621
+ },
2622
+ {
2623
+ "epoch": 0.8299123488294685,
2624
+ "grad_norm": 1.7109375,
2625
+ "learning_rate": 3.2237874407987776e-06,
2626
+ "loss": 0.4211,
2627
+ "step": 7480
2628
+ },
2629
+ {
2630
+ "epoch": 0.8321313658049484,
2631
+ "grad_norm": 2.28125,
2632
+ "learning_rate": 3.1432696820570993e-06,
2633
+ "loss": 0.4771,
2634
+ "step": 7500
2635
+ },
2636
+ {
2637
+ "epoch": 0.8343503827804283,
2638
+ "grad_norm": 1.7109375,
2639
+ "learning_rate": 3.0636523563104985e-06,
2640
+ "loss": 0.4934,
2641
+ "step": 7520
2642
+ },
2643
+ {
2644
+ "epoch": 0.8365693997559082,
2645
+ "grad_norm": 1.6328125,
2646
+ "learning_rate": 2.9849415099195886e-06,
2647
+ "loss": 0.5184,
2648
+ "step": 7540
2649
+ },
2650
+ {
2651
+ "epoch": 0.838788416731388,
2652
+ "grad_norm": 1.234375,
2653
+ "learning_rate": 2.9071431204044123e-06,
2654
+ "loss": 0.4622,
2655
+ "step": 7560
2656
+ },
2657
+ {
2658
+ "epoch": 0.8410074337068678,
2659
+ "grad_norm": 1.6171875,
2660
+ "learning_rate": 2.8302630959905084e-06,
2661
+ "loss": 0.4491,
2662
+ "step": 7580
2663
+ },
2664
+ {
2665
+ "epoch": 0.8432264506823477,
2666
+ "grad_norm": 2.46875,
2667
+ "learning_rate": 2.7543072751602246e-06,
2668
+ "loss": 0.4093,
2669
+ "step": 7600
2670
+ },
2671
+ {
2672
+ "epoch": 0.8454454676578276,
2673
+ "grad_norm": 1.671875,
2674
+ "learning_rate": 2.6792814262093214e-06,
2675
+ "loss": 0.4312,
2676
+ "step": 7620
2677
+ },
2678
+ {
2679
+ "epoch": 0.8476644846333075,
2680
+ "grad_norm": 1.71875,
2681
+ "learning_rate": 2.605191246808912e-06,
2682
+ "loss": 0.455,
2683
+ "step": 7640
2684
+ },
2685
+ {
2686
+ "epoch": 0.8498835016087873,
2687
+ "grad_norm": 2.109375,
2688
+ "learning_rate": 2.5320423635727824e-06,
2689
+ "loss": 0.4839,
2690
+ "step": 7660
2691
+ },
2692
+ {
2693
+ "epoch": 0.8521025185842672,
2694
+ "grad_norm": 2.15625,
2695
+ "learning_rate": 2.45984033163006e-06,
2696
+ "loss": 0.5647,
2697
+ "step": 7680
2698
+ },
2699
+ {
2700
+ "epoch": 0.854321535559747,
2701
+ "grad_norm": 1.6484375,
2702
+ "learning_rate": 2.388590634203366e-06,
2703
+ "loss": 0.4108,
2704
+ "step": 7700
2705
+ },
2706
+ {
2707
+ "epoch": 0.8565405525352269,
2708
+ "grad_norm": 1.90625,
2709
+ "learning_rate": 2.3182986821923934e-06,
2710
+ "loss": 0.3933,
2711
+ "step": 7720
2712
+ },
2713
+ {
2714
+ "epoch": 0.8587595695107068,
2715
+ "grad_norm": 2.015625,
2716
+ "learning_rate": 2.2489698137629904e-06,
2717
+ "loss": 0.413,
2718
+ "step": 7740
2719
+ },
2720
+ {
2721
+ "epoch": 0.8609785864861866,
2722
+ "grad_norm": 2.140625,
2723
+ "learning_rate": 2.1806092939417732e-06,
2724
+ "loss": 0.516,
2725
+ "step": 7760
2726
+ },
2727
+ {
2728
+ "epoch": 0.8631976034616665,
2729
+ "grad_norm": 1.40625,
2730
+ "learning_rate": 2.1132223142162714e-06,
2731
+ "loss": 0.4403,
2732
+ "step": 7780
2733
+ },
2734
+ {
2735
+ "epoch": 0.8654166204371463,
2736
+ "grad_norm": 1.859375,
2737
+ "learning_rate": 2.046813992140679e-06,
2738
+ "loss": 0.4355,
2739
+ "step": 7800
2740
+ },
2741
+ {
2742
+ "epoch": 0.8676356374126262,
2743
+ "grad_norm": 1.4375,
2744
+ "learning_rate": 1.981389370947218e-06,
2745
+ "loss": 0.4744,
2746
+ "step": 7820
2747
+ },
2748
+ {
2749
+ "epoch": 0.869854654388106,
2750
+ "grad_norm": 2.359375,
2751
+ "learning_rate": 1.9169534191631243e-06,
2752
+ "loss": 0.4106,
2753
+ "step": 7840
2754
+ },
2755
+ {
2756
+ "epoch": 0.8720736713635859,
2757
+ "grad_norm": 2.046875,
2758
+ "learning_rate": 1.853511030233354e-06,
2759
+ "loss": 0.4519,
2760
+ "step": 7860
2761
+ },
2762
+ {
2763
+ "epoch": 0.8742926883390658,
2764
+ "grad_norm": 1.7421875,
2765
+ "learning_rate": 1.79106702214893e-06,
2766
+ "loss": 0.4568,
2767
+ "step": 7880
2768
+ },
2769
+ {
2770
+ "epoch": 0.8765117053145457,
2771
+ "grad_norm": 1.5234375,
2772
+ "learning_rate": 1.7296261370810695e-06,
2773
+ "loss": 0.4734,
2774
+ "step": 7900
2775
+ },
2776
+ {
2777
+ "epoch": 0.8787307222900255,
2778
+ "grad_norm": 1.828125,
2779
+ "learning_rate": 1.669193041021041e-06,
2780
+ "loss": 0.547,
2781
+ "step": 7920
2782
+ },
2783
+ {
2784
+ "epoch": 0.8809497392655053,
2785
+ "grad_norm": 1.4453125,
2786
+ "learning_rate": 1.6097723234258188e-06,
2787
+ "loss": 0.5001,
2788
+ "step": 7940
2789
+ },
2790
+ {
2791
+ "epoch": 0.8831687562409852,
2792
+ "grad_norm": 1.6875,
2793
+ "learning_rate": 1.5513684968695574e-06,
2794
+ "loss": 0.447,
2795
+ "step": 7960
2796
+ },
2797
+ {
2798
+ "epoch": 0.8853877732164651,
2799
+ "grad_norm": 1.578125,
2800
+ "learning_rate": 1.4939859967008768e-06,
2801
+ "loss": 0.4161,
2802
+ "step": 7980
2803
+ },
2804
+ {
2805
+ "epoch": 0.887606790191945,
2806
+ "grad_norm": 1.78125,
2807
+ "learning_rate": 1.437629180706037e-06,
2808
+ "loss": 0.4606,
2809
+ "step": 8000
2810
+ },
2811
+ {
2812
+ "epoch": 0.8898258071674249,
2813
+ "grad_norm": 1.6015625,
2814
+ "learning_rate": 1.382302328778e-06,
2815
+ "loss": 0.4126,
2816
+ "step": 8020
2817
+ },
2818
+ {
2819
+ "epoch": 0.8920448241429046,
2820
+ "grad_norm": 1.6015625,
2821
+ "learning_rate": 1.328009642591394e-06,
2822
+ "loss": 0.4313,
2823
+ "step": 8040
2824
+ },
2825
+ {
2826
+ "epoch": 0.8942638411183845,
2827
+ "grad_norm": 1.4296875,
2828
+ "learning_rate": 1.2747552452834388e-06,
2829
+ "loss": 0.4436,
2830
+ "step": 8060
2831
+ },
2832
+ {
2833
+ "epoch": 0.8964828580938644,
2834
+ "grad_norm": 1.6015625,
2835
+ "learning_rate": 1.2225431811408133e-06,
2836
+ "loss": 0.4591,
2837
+ "step": 8080
2838
+ },
2839
+ {
2840
+ "epoch": 0.8987018750693443,
2841
+ "grad_norm": 1.484375,
2842
+ "learning_rate": 1.1713774152925195e-06,
2843
+ "loss": 0.4103,
2844
+ "step": 8100
2845
+ },
2846
+ {
2847
+ "epoch": 0.9009208920448242,
2848
+ "grad_norm": 1.890625,
2849
+ "learning_rate": 1.1212618334087693e-06,
2850
+ "loss": 0.4196,
2851
+ "step": 8120
2852
+ },
2853
+ {
2854
+ "epoch": 0.903139909020304,
2855
+ "grad_norm": 2.125,
2856
+ "learning_rate": 1.0722002414058868e-06,
2857
+ "loss": 0.4701,
2858
+ "step": 8140
2859
+ },
2860
+ {
2861
+ "epoch": 0.9053589259957838,
2862
+ "grad_norm": 1.8671875,
2863
+ "learning_rate": 1.0241963651572867e-06,
2864
+ "loss": 0.4452,
2865
+ "step": 8160
2866
+ },
2867
+ {
2868
+ "epoch": 0.9075779429712637,
2869
+ "grad_norm": 2.21875,
2870
+ "learning_rate": 9.772538502105093e-07,
2871
+ "loss": 0.4122,
2872
+ "step": 8180
2873
+ },
2874
+ {
2875
+ "epoch": 0.9097969599467436,
2876
+ "grad_norm": 1.625,
2877
+ "learning_rate": 9.313762615103761e-07,
2878
+ "loss": 0.4265,
2879
+ "step": 8200
2880
+ },
2881
+ {
2882
+ "epoch": 0.9120159769222235,
2883
+ "grad_norm": 1.9296875,
2884
+ "learning_rate": 8.865670831282513e-07,
2885
+ "loss": 0.4678,
2886
+ "step": 8220
2887
+ },
2888
+ {
2889
+ "epoch": 0.9142349938977034,
2890
+ "grad_norm": 1.671875,
2891
+ "learning_rate": 8.42829717997457e-07,
2892
+ "loss": 0.4137,
2893
+ "step": 8240
2894
+ },
2895
+ {
2896
+ "epoch": 0.9164540108731832,
2897
+ "grad_norm": 1.6484375,
2898
+ "learning_rate": 8.001674876548471e-07,
2899
+ "loss": 0.4939,
2900
+ "step": 8260
2901
+ },
2902
+ {
2903
+ "epoch": 0.918673027848663,
2904
+ "grad_norm": 1.640625,
2905
+ "learning_rate": 7.585836319885525e-07,
2906
+ "loss": 0.4888,
2907
+ "step": 8280
2908
+ },
2909
+ {
2910
+ "epoch": 0.9208920448241429,
2911
+ "grad_norm": 1.578125,
2912
+ "learning_rate": 7.180813089919403e-07,
2913
+ "loss": 0.4352,
2914
+ "step": 8300
2915
+ },
2916
+ {
2917
+ "epoch": 0.9231110617996228,
2918
+ "grad_norm": 1.6640625,
2919
+ "learning_rate": 6.78663594523788e-07,
2920
+ "loss": 0.5086,
2921
+ "step": 8320
2922
+ },
2923
+ {
2924
+ "epoch": 0.9253300787751026,
2925
+ "grad_norm": 1.96875,
2926
+ "learning_rate": 6.403334820746876e-07,
2927
+ "loss": 0.4695,
2928
+ "step": 8340
2929
+ },
2930
+ {
2931
+ "epoch": 0.9275490957505825,
2932
+ "grad_norm": 1.5234375,
2933
+ "learning_rate": 6.030938825397225e-07,
2934
+ "loss": 0.3946,
2935
+ "step": 8360
2936
+ },
2937
+ {
2938
+ "epoch": 0.9297681127260623,
2939
+ "grad_norm": 1.609375,
2940
+ "learning_rate": 5.669476239973975e-07,
2941
+ "loss": 0.4797,
2942
+ "step": 8380
2943
+ },
2944
+ {
2945
+ "epoch": 0.9319871297015422,
2946
+ "grad_norm": 1.796875,
2947
+ "learning_rate": 5.318974514948672e-07,
2948
+ "loss": 0.4274,
2949
+ "step": 8400
2950
+ },
2951
+ {
2952
+ "epoch": 0.9342061466770221,
2953
+ "grad_norm": 1.453125,
2954
+ "learning_rate": 4.979460268394726e-07,
2955
+ "loss": 0.4369,
2956
+ "step": 8420
2957
+ },
2958
+ {
2959
+ "epoch": 0.936425163652502,
2960
+ "grad_norm": 1.6640625,
2961
+ "learning_rate": 4.6509592839659666e-07,
2962
+ "loss": 0.4452,
2963
+ "step": 8440
2964
+ },
2965
+ {
2966
+ "epoch": 0.9386441806279818,
2967
+ "grad_norm": 1.7734375,
2968
+ "learning_rate": 4.333496508938506e-07,
2969
+ "loss": 0.4949,
2970
+ "step": 8460
2971
+ },
2972
+ {
2973
+ "epoch": 0.9408631976034617,
2974
+ "grad_norm": 2.078125,
2975
+ "learning_rate": 4.02709605231627e-07,
2976
+ "loss": 0.4815,
2977
+ "step": 8480
2978
+ },
2979
+ {
2980
+ "epoch": 0.9430822145789415,
2981
+ "grad_norm": 2.109375,
2982
+ "learning_rate": 3.731781182999983e-07,
2983
+ "loss": 0.5533,
2984
+ "step": 8500
2985
+ },
2986
+ {
2987
+ "epoch": 0.9453012315544214,
2988
+ "grad_norm": 1.5234375,
2989
+ "learning_rate": 3.447574328020109e-07,
2990
+ "loss": 0.4741,
2991
+ "step": 8520
2992
+ },
2993
+ {
2994
+ "epoch": 0.9475202485299012,
2995
+ "grad_norm": 1.5546875,
2996
+ "learning_rate": 3.1744970708337205e-07,
2997
+ "loss": 0.5182,
2998
+ "step": 8540
2999
+ },
3000
+ {
3001
+ "epoch": 0.9497392655053811,
3002
+ "grad_norm": 1.4296875,
3003
+ "learning_rate": 2.912570149685323e-07,
3004
+ "loss": 0.4612,
3005
+ "step": 8560
3006
+ },
3007
+ {
3008
+ "epoch": 0.951958282480861,
3009
+ "grad_norm": 1.3984375,
3010
+ "learning_rate": 2.661813456032014e-07,
3011
+ "loss": 0.4253,
3012
+ "step": 8580
3013
+ },
3014
+ {
3015
+ "epoch": 0.9541772994563409,
3016
+ "grad_norm": 2.125,
3017
+ "learning_rate": 2.4222460330327933e-07,
3018
+ "loss": 0.5029,
3019
+ "step": 8600
3020
+ },
3021
+ {
3022
+ "epoch": 0.9563963164318207,
3023
+ "grad_norm": 1.9921875,
3024
+ "learning_rate": 2.1938860741023858e-07,
3025
+ "loss": 0.4444,
3026
+ "step": 8620
3027
+ },
3028
+ {
3029
+ "epoch": 0.9586153334073005,
3030
+ "grad_norm": 1.390625,
3031
+ "learning_rate": 1.9767509215296297e-07,
3032
+ "loss": 0.4607,
3033
+ "step": 8640
3034
+ },
3035
+ {
3036
+ "epoch": 0.9608343503827804,
3037
+ "grad_norm": 1.7890625,
3038
+ "learning_rate": 1.7708570651604306e-07,
3039
+ "loss": 0.5045,
3040
+ "step": 8660
3041
+ },
3042
+ {
3043
+ "epoch": 0.9630533673582603,
3044
+ "grad_norm": 1.484375,
3045
+ "learning_rate": 1.5762201411454626e-07,
3046
+ "loss": 0.4525,
3047
+ "step": 8680
3048
+ },
3049
+ {
3050
+ "epoch": 0.9652723843337402,
3051
+ "grad_norm": 1.28125,
3052
+ "learning_rate": 1.3928549307527183e-07,
3053
+ "loss": 0.4484,
3054
+ "step": 8700
3055
+ },
3056
+ {
3057
+ "epoch": 0.9674914013092201,
3058
+ "grad_norm": 1.7265625,
3059
+ "learning_rate": 1.2207753592450078e-07,
3060
+ "loss": 0.4194,
3061
+ "step": 8720
3062
+ },
3063
+ {
3064
+ "epoch": 0.9697104182846998,
3065
+ "grad_norm": 1.7734375,
3066
+ "learning_rate": 1.059994494822386e-07,
3067
+ "loss": 0.4822,
3068
+ "step": 8740
3069
+ },
3070
+ {
3071
+ "epoch": 0.9719294352601797,
3072
+ "grad_norm": 1.7421875,
3073
+ "learning_rate": 9.105245476297653e-08,
3074
+ "loss": 0.4584,
3075
+ "step": 8760
3076
+ },
3077
+ {
3078
+ "epoch": 0.9741484522356596,
3079
+ "grad_norm": 1.5546875,
3080
+ "learning_rate": 7.723768688296217e-08,
3081
+ "loss": 0.4508,
3082
+ "step": 8780
3083
+ },
3084
+ {
3085
+ "epoch": 0.9763674692111395,
3086
+ "grad_norm": 1.4921875,
3087
+ "learning_rate": 6.455619497399534e-08,
3088
+ "loss": 0.4953,
3089
+ "step": 8800
3090
+ },
3091
+ {
3092
+ "epoch": 0.9785864861866194,
3093
+ "grad_norm": 1.9375,
3094
+ "learning_rate": 5.300894210375329e-08,
3095
+ "loss": 0.4791,
3096
+ "step": 8820
3097
+ },
3098
+ {
3099
+ "epoch": 0.9808055031620991,
3100
+ "grad_norm": 1.4765625,
3101
+ "learning_rate": 4.259680520265596e-08,
3102
+ "loss": 0.4083,
3103
+ "step": 8840
3104
+ },
3105
+ {
3106
+ "epoch": 0.983024520137579,
3107
+ "grad_norm": 1.6328125,
3108
+ "learning_rate": 3.3320574997267595e-08,
3109
+ "loss": 0.449,
3110
+ "step": 8860
3111
+ },
3112
+ {
3113
+ "epoch": 0.9852435371130589,
3114
+ "grad_norm": 1.84375,
3115
+ "learning_rate": 2.5180955950243056e-08,
3116
+ "loss": 0.5022,
3117
+ "step": 8880
3118
+ },
3119
+ {
3120
+ "epoch": 0.9874625540885388,
3121
+ "grad_norm": 1.203125,
3122
+ "learning_rate": 1.8178566206837334e-08,
3123
+ "loss": 0.54,
3124
+ "step": 8900
3125
+ },
3126
+ {
3127
+ "epoch": 0.9896815710640187,
3128
+ "grad_norm": 1.8203125,
3129
+ "learning_rate": 1.231393754795307e-08,
3130
+ "loss": 0.4788,
3131
+ "step": 8920
3132
+ },
3133
+ {
3134
+ "epoch": 0.9919005880394985,
3135
+ "grad_norm": 1.5546875,
3136
+ "learning_rate": 7.587515349762874e-09,
3137
+ "loss": 0.5039,
3138
+ "step": 8940
3139
+ },
3140
+ {
3141
+ "epoch": 0.9941196050149783,
3142
+ "grad_norm": 1.8984375,
3143
+ "learning_rate": 3.9996585498797145e-09,
3144
+ "loss": 0.5317,
3145
+ "step": 8960
3146
+ },
3147
+ {
3148
+ "epoch": 0.9963386219904582,
3149
+ "grad_norm": 2.0,
3150
+ "learning_rate": 1.550639620103711e-09,
3151
+ "loss": 0.4578,
3152
+ "step": 8980
3153
+ },
3154
+ {
3155
+ "epoch": 0.9985576389659381,
3156
+ "grad_norm": 1.5234375,
3157
+ "learning_rate": 2.406445457253659e-10,
3158
+ "loss": 0.474,
3159
+ "step": 9000
3160
+ },
3161
+ {
3162
+ "epoch": 1.0,
3163
+ "step": 9013,
3164
+ "total_flos": 5.485972481640161e+17,
3165
+ "train_loss": 0.4824531834622566,
3166
+ "train_runtime": 26326.043,
3167
+ "train_samples_per_second": 0.685,
3168
+ "train_steps_per_second": 0.342
3169
+ }
3170
+ ],
3171
+ "logging_steps": 20,
3172
+ "max_steps": 9013,
3173
+ "num_input_tokens_seen": 0,
3174
+ "num_train_epochs": 1,
3175
+ "save_steps": 100,
3176
+ "stateful_callbacks": {
3177
+ "TrainerControl": {
3178
+ "args": {
3179
+ "should_epoch_stop": false,
3180
+ "should_evaluate": false,
3181
+ "should_log": false,
3182
+ "should_save": true,
3183
+ "should_training_stop": true
3184
+ },
3185
+ "attributes": {}
3186
+ }
3187
+ },
3188
+ "total_flos": 5.485972481640161e+17,
3189
+ "train_batch_size": 2,
3190
+ "trial_name": null,
3191
+ "trial_params": null
3192
+ }