system HF staff commited on
Commit
fbe9ca0
1 Parent(s): d48fc0d

Commit From AutoTrain

Browse files
.gitattributes CHANGED
@@ -29,3 +29,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zst filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zst filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
32
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
33
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - autotrain
4
+ - text-classification
5
+ language:
6
+ - unk
7
+ widget:
8
+ - text: "I love AutoTrain 🤗"
9
+ datasets:
10
+ - sasha/autotrain-data-BERTBase-TweetEval
11
+ co2_eq_emissions:
12
+ emissions: 0.1376507540502216
13
+ ---
14
+
15
+ # Model Trained Using AutoTrain
16
+
17
+ - Problem type: Multi-class Classification
18
+ - Model ID: 1281248999
19
+ - CO2 Emissions (in grams): 0.1377
20
+
21
+ ## Validation Metrics
22
+
23
+ - Loss: 0.612
24
+ - Accuracy: 0.739
25
+ - Macro F1: 0.716
26
+ - Micro F1: 0.739
27
+ - Weighted F1: 0.737
28
+ - Macro Precision: 0.735
29
+ - Micro Precision: 0.739
30
+ - Weighted Precision: 0.738
31
+ - Macro Recall: 0.703
32
+ - Micro Recall: 0.739
33
+ - Weighted Recall: 0.739
34
+
35
+
36
+ ## Usage
37
+
38
+ You can use cURL to access this model:
39
+
40
+ ```
41
+ $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/sasha/autotrain-BERTBase-TweetEval-1281248999
42
+ ```
43
+
44
+ Or Python API:
45
+
46
+ ```
47
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
48
+
49
+ model = AutoModelForSequenceClassification.from_pretrained("sasha/autotrain-BERTBase-TweetEval-1281248999", use_auth_token=True)
50
+
51
+ tokenizer = AutoTokenizer.from_pretrained("sasha/autotrain-BERTBase-TweetEval-1281248999", use_auth_token=True)
52
+
53
+ inputs = tokenizer("I love AutoTrain", return_tensors="pt")
54
+
55
+ outputs = model(**inputs)
56
+ ```
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "AutoTrain",
3
+ "_num_labels": 3,
4
+ "architectures": [
5
+ "BertForSequenceClassification"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "negative",
15
+ "1": "neutral",
16
+ "2": "positive"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "label2id": {
21
+ "negative": 0,
22
+ "neutral": 1,
23
+ "positive": 2
24
+ },
25
+ "layer_norm_eps": 1e-12,
26
+ "max_length": 256,
27
+ "max_position_embeddings": 512,
28
+ "model_type": "bert",
29
+ "num_attention_heads": 12,
30
+ "num_hidden_layers": 12,
31
+ "pad_token_id": 0,
32
+ "padding": "max_length",
33
+ "position_embedding_type": "absolute",
34
+ "problem_type": "single_label_classification",
35
+ "torch_dtype": "float32",
36
+ "transformers_version": "4.20.0",
37
+ "type_vocab_size": 2,
38
+ "use_cache": true,
39
+ "vocab_size": 30522
40
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b3214f5ce218f82182aab6dc7e86a826a70b72a2005ad2934b3e921fc68c058
3
+ size 438009197
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_lower_case": true,
4
+ "mask_token": "[MASK]",
5
+ "model_max_length": 512,
6
+ "name_or_path": "AutoTrain",
7
+ "pad_token": "[PAD]",
8
+ "sep_token": "[SEP]",
9
+ "special_tokens_map_file": null,
10
+ "strip_accents": null,
11
+ "tokenize_chinese_chars": true,
12
+ "tokenizer_class": "BertTokenizer",
13
+ "unk_token": "[UNK]"
14
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff