saraleivam commited on
Commit
9a77067
1 Parent(s): 0afb1a8

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:521
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: 'Marketing digital: estrategias para redes sociales y SEO.'
16
+ sentences:
17
+ - AI developer with reinforcement learning skills.
18
+ - Ingeniero civil con experiencia en diseño de estructuras.
19
+ - Especialista en marketing digital con experiencia en campañas de Google Ads y
20
+ Facebook Ads.
21
+ - source_sentence: AI for speech recognition and synthesis.
22
+ sentences:
23
+ - Ingeniero de machine learning con habilidades en PyTorch
24
+ - AI developer with speech recognition skills.
25
+ - Teacher with classroom management skills.
26
+ - source_sentence: Advanced CSS and responsive design.
27
+ sentences:
28
+ - Sort, query, and structure data in Pandas, the Python library. Describe how to
29
+ model and interpret data using Python. Create basic data visualizations with Python
30
+ libraries
31
+ - Engineer with circuit design experience.
32
+ - Front-end developer with advanced CSS and responsive web design skills.
33
+ - source_sentence: PostgreSQL Database Administration Course.
34
+ sentences:
35
+ - Nutritionist with clinical dietetics skills.
36
+ - Community manager with experience in managing social networks and creating viral
37
+ content.
38
+ - Database administrator with PostgreSQL experience.
39
+ - source_sentence: Búsqueda, reconocimiento y captación de potenciales clientes nuevos
40
+ en el sector público.Exploración de tendencias y competidores en el mercado, ajustando
41
+ estrategias de comercialización.Elaborar y presentar propuestas personalizadas
42
+ resaltando las ventajas de los servicios en la nube.Negociar condiciones, términos
43
+ y precios con posibles clientes para garantizar la concreción de acuerdos de venta.Ofrecer
44
+ asistencia posterior a la venta, resolver problemas y asegurar la satisfacción
45
+ del cliente.Fomentar relaciones con clientes ya existentes, comprendiendo sus
46
+ necesidades a largo plazo.Detectar oportunidades adicionales en cuentas existentes
47
+ mediante la presentación de nuevas soluciones y servicios que beneficien a los
48
+ clientes.
49
+ sentences:
50
+ - Demonstrate mastery of skills and knowledge acquired in the IBM Full Stack Software
51
+ Developer Professional Certificate.. Apply understanding of common technologies
52
+ related to full-stack, front-end, and back-end application development.. Explain
53
+ concepts in cloud computing, web development, HTML, CSS, JavaScript, GitHub, Python
54
+ and Django programming, microservices, and containers.. Analyze and troubleshoot
55
+ issues in software design, development, deployment, and operations.
56
+ - Digital Marketing, Media Production, Social Media, Marketing
57
+ - Orador público con habilidades en presentaciones efectivas y comunicación en público
58
+ ---
59
+
60
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
61
+
62
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the dataset dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
63
+
64
+ ## Model Details
65
+
66
+ ### Model Description
67
+ - **Model Type:** Sentence Transformer
68
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
69
+ - **Maximum Sequence Length:** 128 tokens
70
+ - **Output Dimensionality:** 384 tokens
71
+ - **Similarity Function:** Cosine Similarity
72
+ - **Training Dataset:**
73
+ - dataset
74
+ <!-- - **Language:** Unknown -->
75
+ <!-- - **License:** Unknown -->
76
+
77
+ ### Model Sources
78
+
79
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
80
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
81
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
82
+
83
+ ### Full Model Architecture
84
+
85
+ ```
86
+ SentenceTransformer(
87
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
88
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
89
+ )
90
+ ```
91
+
92
+ ## Usage
93
+
94
+ ### Direct Usage (Sentence Transformers)
95
+
96
+ First install the Sentence Transformers library:
97
+
98
+ ```bash
99
+ pip install -U sentence-transformers
100
+ ```
101
+
102
+ Then you can load this model and run inference.
103
+ ```python
104
+ from sentence_transformers import SentenceTransformer
105
+
106
+ # Download from the 🤗 Hub
107
+ model = SentenceTransformer("saraleivam/GURU-trained-model1")
108
+ # Run inference
109
+ sentences = [
110
+ 'Búsqueda, reconocimiento y captación de potenciales clientes nuevos en el sector público.Exploración de tendencias y competidores en el mercado, ajustando estrategias de comercialización.Elaborar y presentar propuestas personalizadas resaltando las ventajas de los servicios en la nube.Negociar condiciones, términos y precios con posibles clientes para garantizar la concreción de acuerdos de venta.Ofrecer asistencia posterior a la venta, resolver problemas y asegurar la satisfacción del cliente.Fomentar relaciones con clientes ya existentes, comprendiendo sus necesidades a largo plazo.Detectar oportunidades adicionales en cuentas existentes mediante la presentación de nuevas soluciones y servicios que beneficien a los clientes.',
111
+ 'Digital Marketing, Media Production, Social Media, Marketing',
112
+ 'Demonstrate mastery of skills and knowledge acquired in the IBM Full Stack Software Developer Professional Certificate.. Apply understanding of common technologies related to full-stack, front-end, and back-end application development.. Explain concepts in cloud computing, web development, HTML, CSS, JavaScript, GitHub, Python and Django programming, microservices, and containers.. Analyze and troubleshoot issues in software design, development, deployment, and operations.',
113
+ ]
114
+ embeddings = model.encode(sentences)
115
+ print(embeddings.shape)
116
+ # [3, 384]
117
+
118
+ # Get the similarity scores for the embeddings
119
+ similarities = model.similarity(embeddings, embeddings)
120
+ print(similarities.shape)
121
+ # [3, 3]
122
+ ```
123
+
124
+ <!--
125
+ ### Direct Usage (Transformers)
126
+
127
+ <details><summary>Click to see the direct usage in Transformers</summary>
128
+
129
+ </details>
130
+ -->
131
+
132
+ <!--
133
+ ### Downstream Usage (Sentence Transformers)
134
+
135
+ You can finetune this model on your own dataset.
136
+
137
+ <details><summary>Click to expand</summary>
138
+
139
+ </details>
140
+ -->
141
+
142
+ <!--
143
+ ### Out-of-Scope Use
144
+
145
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
146
+ -->
147
+
148
+ <!--
149
+ ## Bias, Risks and Limitations
150
+
151
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
152
+ -->
153
+
154
+ <!--
155
+ ### Recommendations
156
+
157
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
158
+ -->
159
+
160
+ ## Training Details
161
+
162
+ ### Training Dataset
163
+
164
+ #### dataset
165
+
166
+ * Dataset: dataset
167
+ * Size: 521 training samples
168
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
169
+ * Approximate statistics based on the first 1000 samples:
170
+ | | anchor | positive | negative |
171
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
172
+ | type | string | string | string |
173
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.76 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 20.19 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 15.48 tokens</li><li>max: 128 tokens</li></ul> |
174
+ * Samples:
175
+ | anchor | positive | negative |
176
+ |:-------------------------------------------------------------|:-----------------------------------------------------------------------------|:-----------------------------------------------------------|
177
+ | <code>Introduction to Docker and containerization.</code> | <code>DevOps engineer with Docker and container orchestration skills.</code> | <code>Biologist with field research experience.</code> |
178
+ | <code>Curso de desarrollo de aplicaciones con Vue.js.</code> | <code>Desarrollador web con habilidades en Vue.js.</code> | <code>Médico con habilidades en cardiología.</code> |
179
+ | <code>Desarrollo de videojuegos con Godot</code> | <code>Desarrollador de videojuegos con experiencia en Godot</code> | <code>Profesor de arte con experiencia en escultura</code> |
180
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
181
+ ```json
182
+ {
183
+ "scale": 20.0,
184
+ "similarity_fct": "cos_sim"
185
+ }
186
+ ```
187
+
188
+ ### Evaluation Dataset
189
+
190
+ #### dataset
191
+
192
+ * Dataset: dataset
193
+ * Size: 131 evaluation samples
194
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
195
+ * Approximate statistics based on the first 1000 samples:
196
+ | | anchor | positive | negative |
197
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
198
+ | type | string | string | string |
199
+ | details | <ul><li>min: 5 tokens</li><li>mean: 18.05 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 19.0 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 14.86 tokens</li><li>max: 109 tokens</li></ul> |
200
+ * Samples:
201
+ | anchor | positive | negative |
202
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------------------------------------------------------------|
203
+ | <code>Swift Mobile Application Development.</code> | <code>iOS developer with experience in Swift and Xcode.</code> | <code>Psychologist with trauma therapy experience.</code> |
204
+ | <code>Diseño de interfaces de usuario con Figma</code> | <code>Diseñador UX/UI con habilidades en Figma y prototipado</code> | <code>Ingeniero eléctrico con experiencia en sistemas de energía</code> |
205
+ | <code>Principles of natural language understanding.</code> | <code>NLP engineer with natural language understanding skills.</code> | <code>Chef with traditional cuisine skills.</code> |
206
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
207
+ ```json
208
+ {
209
+ "scale": 20.0,
210
+ "similarity_fct": "cos_sim"
211
+ }
212
+ ```
213
+
214
+ ### Training Hyperparameters
215
+
216
+ #### All Hyperparameters
217
+ <details><summary>Click to expand</summary>
218
+
219
+ - `overwrite_output_dir`: False
220
+ - `do_predict`: False
221
+ - `eval_strategy`: no
222
+ - `prediction_loss_only`: True
223
+ - `per_device_train_batch_size`: 8
224
+ - `per_device_eval_batch_size`: 8
225
+ - `per_gpu_train_batch_size`: None
226
+ - `per_gpu_eval_batch_size`: None
227
+ - `gradient_accumulation_steps`: 1
228
+ - `eval_accumulation_steps`: None
229
+ - `learning_rate`: 5e-05
230
+ - `weight_decay`: 0.0
231
+ - `adam_beta1`: 0.9
232
+ - `adam_beta2`: 0.999
233
+ - `adam_epsilon`: 1e-08
234
+ - `max_grad_norm`: 1.0
235
+ - `num_train_epochs`: 3.0
236
+ - `max_steps`: -1
237
+ - `lr_scheduler_type`: linear
238
+ - `lr_scheduler_kwargs`: {}
239
+ - `warmup_ratio`: 0.0
240
+ - `warmup_steps`: 0
241
+ - `log_level`: passive
242
+ - `log_level_replica`: warning
243
+ - `log_on_each_node`: True
244
+ - `logging_nan_inf_filter`: True
245
+ - `save_safetensors`: True
246
+ - `save_on_each_node`: False
247
+ - `save_only_model`: False
248
+ - `restore_callback_states_from_checkpoint`: False
249
+ - `no_cuda`: False
250
+ - `use_cpu`: False
251
+ - `use_mps_device`: False
252
+ - `seed`: 42
253
+ - `data_seed`: None
254
+ - `jit_mode_eval`: False
255
+ - `use_ipex`: False
256
+ - `bf16`: False
257
+ - `fp16`: False
258
+ - `fp16_opt_level`: O1
259
+ - `half_precision_backend`: auto
260
+ - `bf16_full_eval`: False
261
+ - `fp16_full_eval`: False
262
+ - `tf32`: None
263
+ - `local_rank`: 0
264
+ - `ddp_backend`: None
265
+ - `tpu_num_cores`: None
266
+ - `tpu_metrics_debug`: False
267
+ - `debug`: []
268
+ - `dataloader_drop_last`: False
269
+ - `dataloader_num_workers`: 0
270
+ - `dataloader_prefetch_factor`: None
271
+ - `past_index`: -1
272
+ - `disable_tqdm`: False
273
+ - `remove_unused_columns`: True
274
+ - `label_names`: None
275
+ - `load_best_model_at_end`: False
276
+ - `ignore_data_skip`: False
277
+ - `fsdp`: []
278
+ - `fsdp_min_num_params`: 0
279
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
280
+ - `fsdp_transformer_layer_cls_to_wrap`: None
281
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
282
+ - `deepspeed`: None
283
+ - `label_smoothing_factor`: 0.0
284
+ - `optim`: adamw_torch
285
+ - `optim_args`: None
286
+ - `adafactor`: False
287
+ - `group_by_length`: False
288
+ - `length_column_name`: length
289
+ - `ddp_find_unused_parameters`: None
290
+ - `ddp_bucket_cap_mb`: None
291
+ - `ddp_broadcast_buffers`: False
292
+ - `dataloader_pin_memory`: True
293
+ - `dataloader_persistent_workers`: False
294
+ - `skip_memory_metrics`: True
295
+ - `use_legacy_prediction_loop`: False
296
+ - `push_to_hub`: False
297
+ - `resume_from_checkpoint`: None
298
+ - `hub_model_id`: None
299
+ - `hub_strategy`: every_save
300
+ - `hub_private_repo`: False
301
+ - `hub_always_push`: False
302
+ - `gradient_checkpointing`: False
303
+ - `gradient_checkpointing_kwargs`: None
304
+ - `include_inputs_for_metrics`: False
305
+ - `eval_do_concat_batches`: True
306
+ - `fp16_backend`: auto
307
+ - `push_to_hub_model_id`: None
308
+ - `push_to_hub_organization`: None
309
+ - `mp_parameters`:
310
+ - `auto_find_batch_size`: False
311
+ - `full_determinism`: False
312
+ - `torchdynamo`: None
313
+ - `ray_scope`: last
314
+ - `ddp_timeout`: 1800
315
+ - `torch_compile`: False
316
+ - `torch_compile_backend`: None
317
+ - `torch_compile_mode`: None
318
+ - `dispatch_batches`: None
319
+ - `split_batches`: None
320
+ - `include_tokens_per_second`: False
321
+ - `include_num_input_tokens_seen`: False
322
+ - `neftune_noise_alpha`: None
323
+ - `optim_target_modules`: None
324
+ - `batch_eval_metrics`: False
325
+ - `batch_sampler`: batch_sampler
326
+ - `multi_dataset_batch_sampler`: proportional
327
+
328
+ </details>
329
+
330
+ ### Training Logs
331
+ | Epoch | Step | dataset loss |
332
+ |:-----:|:----:|:------------:|
333
+ | 3.0 | 198 | 0.0467 |
334
+
335
+
336
+ ### Framework Versions
337
+ - Python: 3.10.12
338
+ - Sentence Transformers: 3.0.1
339
+ - Transformers: 4.41.2
340
+ - PyTorch: 2.3.0+cu121
341
+ - Accelerate: 0.31.0
342
+ - Datasets: 2.20.0
343
+ - Tokenizers: 0.19.1
344
+
345
+ ## Citation
346
+
347
+ ### BibTeX
348
+
349
+ #### Sentence Transformers
350
+ ```bibtex
351
+ @inproceedings{reimers-2019-sentence-bert,
352
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
353
+ author = "Reimers, Nils and Gurevych, Iryna",
354
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
355
+ month = "11",
356
+ year = "2019",
357
+ publisher = "Association for Computational Linguistics",
358
+ url = "https://arxiv.org/abs/1908.10084",
359
+ }
360
+ ```
361
+
362
+ #### MultipleNegativesRankingLoss
363
+ ```bibtex
364
+ @misc{henderson2017efficient,
365
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
366
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
367
+ year={2017},
368
+ eprint={1705.00652},
369
+ archivePrefix={arXiv},
370
+ primaryClass={cs.CL}
371
+ }
372
+ ```
373
+
374
+ <!--
375
+ ## Glossary
376
+
377
+ *Clearly define terms in order to be accessible across audiences.*
378
+ -->
379
+
380
+ <!--
381
+ ## Model Card Authors
382
+
383
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
384
+ -->
385
+
386
+ <!--
387
+ ## Model Card Contact
388
+
389
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
390
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8c10a438edfaafb0ed00ae6bed991b1c920b95b6c4b5ff2c319df4e52492daa
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260