s3nh commited on
Commit
46cd813
1 Parent(s): 5b58e66

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -2
README.md CHANGED
@@ -14,7 +14,7 @@ Buy me a coffee if you like this project ;)
14
 
15
  #### Description
16
 
17
- GGML Format model files for [This project](https://huggingface.co/James-WYang/BigTranslate).
18
 
19
 
20
  ### inference
@@ -41,4 +41,28 @@ llm(manual_input,
41
 
42
 
43
 
44
- # Original model card
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  #### Description
16
 
17
+ GGML Format model files for [This project](https://huggingface.co/ziqingyang/chinese-alpaca-2-7b).
18
 
19
 
20
  ### inference
 
41
 
42
 
43
 
44
+ # Original model card
45
+
46
+
47
+ **This is the full Chinese-Alpaca-2-7B model,which can be loaded directly for inference and full-parameter training.**
48
+
49
+ **Related models👇**
50
+ * Base models
51
+ * [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/ziqingyang/chinese-llama-2-7b)
52
+ * [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/ziqingyang/chinese-llama-2-lora-7b)
53
+ * Instruction/Chat models
54
+ * [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/ziqingyang/chinese-alpaca-2-7b)
55
+ * [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/ziqingyang/chinese-alpaca-2-lora-7b)
56
+
57
+
58
+ # Description of Chinese-LLaMA-Alpaca-2
59
+ This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method.
60
+
61
+ The main contents of this project include:
62
+
63
+ * 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs.
64
+ * 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data
65
+ * 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC
66
+ * 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc.
67
+
68
+ Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.