File size: 9,047 Bytes
cbfd8bb
b3e3351
132b06e
 
b3e3351
cc02066
b3e3351
 
 
 
 
 
 
 
f641683
b3e3351
 
 
 
 
 
 
 
373f319
b3e3351
 
 
 
 
 
 
 
f641683
b3e3351
 
 
 
 
 
 
 
f641683
b3e3351
 
 
 
 
 
 
 
f641683
b3e3351
 
 
 
 
 
132b06e
373f319
 
cbfd8bb
 
3448282
cbfd8bb
b3e3351
8844e52
cbfd8bb
8844e52
 
b3e3351
 
 
 
 
 
0975adc
b3e3351
 
6348542
 
 
 
 
 
b3e3351
 
 
 
 
 
 
 
 
 
 
fa1dc48
b3e3351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbfd8bb
 
b3e3351
cbfd8bb
b3e3351
 
 
 
 
 
 
 
 
 
 
 
ef5c674
b3e3351
 
 
 
 
 
 
 
 
 
 
 
66eab35
b3e3351
 
735773b
e7501d0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
---
license: llama3
library_name: transformers
pipeline_tag: text-generation
model-index:
- name: Rubra-Meta-Llama-3-8B-Instruct
  results:
  - task:
      type: text-generation
    dataset:
      type: MMLU
      name: MMLU
    metrics:
    - type: 5-shot
      value: 64.39
      verified: false
  - task:
      type: text-generation
    dataset:
      type: GPQA
      name: GPQA
    metrics:
    - type: 0-shot
      value: 31.7
      verified: false
  - task:
      type: text-generation
    dataset:
      type: GSM-8K
      name: GSM-8K
    metrics:
    - type: 8-shot, CoT
      value: 68.99
      verified: false
  - task:
      type: text-generation
    dataset:
      type: MATH
      name: MATH
    metrics:
    - type: 4-shot, CoT
      value: 23.76
      verified: false
  - task:
      type: text-generation
    dataset:
      type: MT-bench
      name: MT-bench
    metrics:
    - type: GPT-4 as Judge
      value: 8.03
      verified: false
tags:
- function-calling
- tool-calling
- agentic
- rubra
- conversational
language:
- en
---

# Rubra Llama-3 8B Instruct

## Model description
The model is the result of further post-training [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). This model is designed for high performance in various instruction-following tasks and complex interactions, including multi-turn function calling and detailed conversations.

## Training Data
The model underwent additional training on a proprietary dataset encompassing diverse instruction-following, chat, and function calling data. This post-training process enhances the model's ability to integrate tools and manage complex interaction scenarios effectively.

## How to use

You can use the model with the Hugging Face `transformers` and the rubra library [rubra-tools](https://github.com/rubra-ai/rubra-tools) as follows:

```
pip install rubra_tools torch==2.3.0 transformers accelerate
```

You also need Node.js and npm installed. Once you do, install the `jsonrepair` package - it's used to fix some rare hallucinations by the model.

```
npm install jsonrepair
```

### 1. Load the Model
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from rubra_tools import preprocess_input, postprocess_output

model_id = "rubra-ai/Meta-Llama-3-8B-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype="auto",
    device_map="auto",
)
```

### 2. Define Functions

Here we use 4 functions for a simple math chaining question:
```python
functions = [
    {
            'type': 'function',
            'function': {
                'name': 'addition',
                'description': "Adds two numbers together",
                'parameters': {
                    'type': 'object',
                    'properties': {
                        'a': {
                            'description': 'First number to add',
                            'type': 'string'
                        },
                        'b': {
                            'description': 'Second number to add',
                            'type': 'string'
                        }
                    },
                    'required': []
                }
            }
        },
        {
            'type': 'function',
            'function': {
                'name': 'subtraction',
                'description': "Subtracts two numbers",
                'parameters': {
                    'type': 'object',
                    'properties': {
                        'a': {
                            'description': 'First number to be subtracted from',
                            'type': 'string'
                        },
                        'b': {
                            'description': 'Number to subtract',
                            'type': 'string'
                        }
                    },
                    'required': []
                }
            }
        },
        {
            'type': 'function',
            'function': {
                'name': 'multiplication',
                'description': "Multiply two numbers together",
                'parameters': {
                    'type': 'object',
                    'properties': {
                        'a': {
                            'description': 'First number to multiply',
                            'type': 'string'
                        },
                        'b': {
                            'description': 'Second number to multiply',
                            'type': 'string'
                        }
                    },
                    'required': []
                }
            }
        },
        {
            'type': 'function',
            'function': {
                'name': 'division',
                'description': "Divide two numbers",
                'parameters': {
                    'type': 'object',
                    'properties': {
                        'a': {
                            'description': 'First number to use as the dividend',
                            'type': 'string'
                        },
                        'b': {
                            'description': 'Second number to use as the divisor',
                            'type': 'string'
                        }
                    },
                    'required': []
                }
            }
        },
]
```

### 3. Start the conversation
```python
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "What is the result of four plus six? Take the result and add 2? Then multiply by 5 and then divide by two"},
]

def run_model(messages, functions):
    ## Format messages in Rubra's format
    formatted_msgs = preprocess_input(msgs=messages, tools=functions)

    input_ids = tokenizer.apply_chat_template(
        formatted_msgs,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(model.device)

    terminators = [
        tokenizer.eos_token_id,
        tokenizer.convert_tokens_to_ids("")
    ]

    outputs = model.generate(
        input_ids,
        max_new_tokens=1000,
        eos_token_id=terminators,
        do_sample=True,
        temperature=0.1,
        top_p=0.9,
    )
    response = outputs[0][input_ids.shape[-1]:]
    raw_output = tokenizer.decode(response, skip_special_tokens=True)
    return raw_output

raw_output = run_model(messages, functions)
# Check if there's a function call
function_call = postprocess_output(raw_output)
if function_call:
    print(function_call)
else:
    print(raw_output)
```

You should see this output, which is a function call made by the AI assistant:
```
[{'id': 'fc65a533', 'function': {'name': 'addition', 'arguments': '{"a": "4", "b": "6"}'}, 'type': 'function'}]
```

### 4. Add Executed Tool Result to Message History & Continue the Conversation

```python
if function_call:
    # append the assistant tool call msg
    messages.append({"role": "assistant", "tool_calls": function_call})
    # append the result of the tool call in openai format, in this case, the value of add 6 to 4 is 10.
    messages.append({'role': 'tool', 'tool_call_id': function_call[0]["id"], 'name': function_call[0]["function"]["name"], 'content': '10'})
    raw_output = run_model(messages, functions)
    # Check if there's a function call
    function_call = postprocess_output(raw_output)
    if function_call:
        print(function_call)
    else:
        print(raw_output)
```

The LLM will make another call
```
[{'id': '2ffc3de4', 'function': {'name': 'addition', 'arguments': '{"a": "10", "b": "2"}'}, 'type': 'function'}]
```

## Framework Versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1

## Limitations and Bias

While the model performs well on a wide range of tasks, it may still produce biased or incorrect outputs. Users should exercise caution and critical judgment when using the model in sensitive or high-stakes applications. The model's outputs are influenced by the data it was trained on, which may contain inherent biases.

## Ethical Considerations

Users should ensure that the deployment of this model adheres to ethical guidelines and consider the potential societal impact of the generated text. Misuse of the model for generating harmful or misleading content is strongly discouraged.

## Acknowledgements

We would like to thank Meta for the model.

## Contact Information

For questions or comments about the model, please reach out to [the rubra team](mailto:[email protected]).

## Citation

If you use this work, please cite it as:

```
@misc {rubra_ai_2024,
	author       = { Sanjay Nadhavajhala and Yingbei Tong },
	title        = { Rubra-Meta-Llama-3-8B-Instruct },
	year         = 2024,
	url          = { https://huggingface.co/rubra-ai/Meta-Llama-3-8B-Instruct },
	doi          = { 10.57967/hf/2680 },
	publisher    = { Hugging Face }
}