Clarify this is a clone and correct the use of ZipNN
Browse files
README.md
CHANGED
@@ -11,6 +11,25 @@ language:
|
|
11 |
- en
|
12 |
base_model: ibm/granite-7b-base
|
13 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Model Card for Granite-7b-lab [Paper](https://arxiv.org/abs/2403.01081)
|
15 |
|
16 |
### Overview
|
@@ -78,39 +97,29 @@ Importantly, we use a set of hyper-parameters for training that are very differe
|
|
78 |
- **Base model:** [ibm/granite-7b-base](https://huggingface.co/ibm/granite-7b-base)
|
79 |
- **Teacher Model:** [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
|
80 |
|
81 |
-
## Usage
|
82 |
-
This fork is compressed using ZipNN. To use the model, decompress the model tensors as discribed below and load the local weights.
|
83 |
-
|
84 |
-
You need to [clone this repository](https://huggingface.co/royleibov/granite-7b-instruct-ZipNN-Compressed?clone=true) to decompress the model.
|
85 |
-
|
86 |
-
Then:
|
87 |
-
```bash
|
88 |
-
cd granite-7b-instruct-ZipNN-Compressed
|
89 |
-
```
|
90 |
-
|
91 |
-
First decompress the model weights:
|
92 |
-
```bash
|
93 |
-
python3 zipnn_decompress_path.py --path .
|
94 |
-
```
|
95 |
-
|
96 |
-
Now just run the local version of the model.
|
97 |
### Use a pipeline as a high-level helper
|
98 |
```python
|
99 |
from transformers import pipeline
|
|
|
|
|
|
|
100 |
|
101 |
messages = [
|
102 |
{"role": "user", "content": "Who are you?"},
|
103 |
]
|
104 |
-
pipe = pipeline("text-generation", model="
|
105 |
pipe(messages)
|
106 |
```
|
107 |
|
108 |
### Load model directly
|
109 |
```python
|
110 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
111 |
|
112 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
113 |
-
model = AutoModelForCausalLM.from_pretrained("
|
114 |
```
|
115 |
|
116 |
## Prompt Template
|
|
|
11 |
- en
|
12 |
base_model: ibm/granite-7b-base
|
13 |
---
|
14 |
+
# Disclaimer and Requirements
|
15 |
+
|
16 |
+
This model is a clone of [ibm-granite/granite-7b-instruct](https://huggingface.co/ibm-granite/granite-7b-instruct) compressed using ZipNN. Compressed losslessly to 67% its original size, ZipNN saved ~5GB in storage and potentially ~30TB in data transfer **monthly**.
|
17 |
+
|
18 |
+
## Requirement
|
19 |
+
|
20 |
+
In order to use the model, ZipNN is necessary:
|
21 |
+
```bash
|
22 |
+
pip install zipnn
|
23 |
+
```
|
24 |
+
|
25 |
+
Then simply add at the beginning of the file
|
26 |
+
```python
|
27 |
+
from zipnn import zipnn_hf_patch
|
28 |
+
|
29 |
+
zipnn_hf_patch()
|
30 |
+
```
|
31 |
+
And continue as usual. The patch will take care of decompressing the model correctly and safely.
|
32 |
+
|
33 |
# Model Card for Granite-7b-lab [Paper](https://arxiv.org/abs/2403.01081)
|
34 |
|
35 |
### Overview
|
|
|
97 |
- **Base model:** [ibm/granite-7b-base](https://huggingface.co/ibm/granite-7b-base)
|
98 |
- **Teacher Model:** [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
### Use a pipeline as a high-level helper
|
101 |
```python
|
102 |
from transformers import pipeline
|
103 |
+
from zipnn import zipnn_hf_patch
|
104 |
+
|
105 |
+
zipnn_hf_patch()
|
106 |
|
107 |
messages = [
|
108 |
{"role": "user", "content": "Who are you?"},
|
109 |
]
|
110 |
+
pipe = pipeline("text-generation", model="royleibov/granite-7b-instruct-ZipNN-Compressed")
|
111 |
pipe(messages)
|
112 |
```
|
113 |
|
114 |
### Load model directly
|
115 |
```python
|
116 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
117 |
+
from zipnn import zipnn_hf_patch
|
118 |
+
|
119 |
+
zipnn_hf_patch()
|
120 |
|
121 |
+
tokenizer = AutoTokenizer.from_pretrained("royleibov/granite-7b-instruct-ZipNN-Compressed")
|
122 |
+
model = AutoModelForCausalLM.from_pretrained("royleibov/granite-7b-instruct-ZipNN-Compressed")
|
123 |
```
|
124 |
|
125 |
## Prompt Template
|