File size: 1,312 Bytes
f92fdc2
 
 
5e7939b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31b56c6
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Model trained on the TinyStories Dataset, see https://arxiv.org/abs/2305.07759

------ EXAMPLE USAGE ---

from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

model = AutoModelForCausalLM.from_pretrained('roneneldan/TinyStories-1M')

tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")

prompt = "Once upon a time there was"

input_ids = tokenizer.encode(prompt, return_tensors="pt")

# Generate completion
output = model.generate(input_ids, max_length = 1000, num_beams=1)

# Decode the completion
output_text = tokenizer.decode(output[0], skip_special_tokens=True)

# Print the generated text
print(output_text)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_roneneldan__TinyStories-1M)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 25.02   |
| ARC (25-shot)         | 23.46          |
| HellaSwag (10-shot)   | 25.23    |
| MMLU (5-shot)         | 24.57         |
| TruthfulQA (0-shot)   | 49.4   |
| Winogrande (5-shot)   | 52.17   |
| GSM8K (5-shot)        | 0.0        |
| DROP (3-shot)         | 0.32         |