--- license: apache-2.0 base_model: sshleifer/distilbart-xsum-12-6 tags: - generated_from_trainer model-index: - name: bart-abs-1509-0313-lr-3e-06-bs-2-maxep-6 results: [] --- # bart-abs-1509-0313-lr-3e-06-bs-2-maxep-6 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.5722 - Rouge/rouge1: 0.3111 - Rouge/rouge2: 0.0793 - Rouge/rougel: 0.2212 - Rouge/rougelsum: 0.2213 - Bertscore/bertscore-precision: 0.8659 - Bertscore/bertscore-recall: 0.864 - Bertscore/bertscore-f1: 0.8649 - Meteor: 0.228 - Gen Len: 36.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| | 0.3628 | 1.0 | 434 | 6.2314 | 0.2519 | 0.0551 | 0.191 | 0.191 | 0.8502 | 0.8569 | 0.8535 | 0.2501 | 50.8 | | 0.3799 | 2.0 | 868 | 6.4498 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | | 0.4173 | 3.0 | 1302 | 6.4553 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | | 0.3921 | 4.0 | 1736 | 6.5283 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | | 0.3833 | 5.0 | 2170 | 6.5582 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | | 0.378 | 6.0 | 2604 | 6.5722 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1