File size: 1,796 Bytes
ba6dc36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
546c65d
 
 
ba6dc36
 
546c65d
 
 
ba6dc36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
#   - text: >-
#       prompt
#     output:
#       url: https://...
instance_prompt: sweet
---

# Flux1.Lora.Sweetdream

![](sample.jpg)

Prompt: sweet colorful cake with sprinkels and candy. A hyper-realistic portrait of a woman sitting on a chair. She looks into the camera with an almost invisible subliminal smile
<!-- <Gallery /> -->

With thanks to [⚡straico.com⚡](https://huggingface.co/Straico) for supporting my work. You can support me to by using [this affiliate link](https://platform.straico.com/signup?fpr=roelf14) when subscribing to ⚡Straico⚡

You can find my blog pages at [https://roelfrenkema.github.io](https://roelfrenkema.github.io) and if you want to send me a coffee push the button. [![ko-fi](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/Q5Q8124DNL)



## Trigger words
You should use `sweet` to trigger the image generation.


## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('roelfrenkema/flux1.lora.sweetdream', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)