File size: 815 Bytes
1a1dde9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
class Net(torch.nn.Module):
def __init__(self, num_relations, num_classes, num_nodes=None, input_dim=None, hidden_dim=16, num_bases=30):
super().__init__()
assert num_nodes is not None or input_dim is not None, "Please provide input feature dimensionality or number of nodes"
self.conv1 = RGCNConv(num_nodes if input_dim is None else input_dim, hidden_dim, num_relations,
num_bases)
self.conv2 = RGCNConv(hidden_dim, num_classes, dataset.num_relations,
num_bases)
def forward(self, x, edge_index, edge_type):
# if x is None, uses an embedding based on num_nodes
x = F.relu(self.conv1(x, edge_index, edge_type))
x = self.conv2(x, edge_index, edge_type)
return F.log_softmax(x, dim=1) |