|
|
|
import torch |
|
|
|
import commons |
|
import utils |
|
from models import SynthesizerTrn |
|
from text.symbols import symbols |
|
from text import text_to_sequence |
|
import time |
|
|
|
from scipy.io.wavfile import write |
|
|
|
|
|
def get_text(text, hps): |
|
text_norm = text_to_sequence(text, hps.data.text_cleaners) |
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
print(text, text_norm) |
|
text_norm = torch.LongTensor(text_norm) |
|
return text_norm |
|
|
|
LANG = 'ru' |
|
CONFIG_PATH = f"./configs/{LANG}_base.json" |
|
MODEL_PATH = f"./logs/{LANG}_base/G_40000.pth" |
|
|
|
|
|
TEXT = "привет. Я президент Путин, и мне нравятся советские лидеры Сталин и Ленин." |
|
|
|
|
|
|
|
|
|
hps = utils.get_hparams_from_file(CONFIG_PATH) |
|
|
|
if ( |
|
"use_mel_posterior_encoder" in hps.model.keys() |
|
and hps.model.use_mel_posterior_encoder == True |
|
): |
|
print("Using mel posterior encoder for VITS2") |
|
posterior_channels = 80 |
|
hps.data.use_mel_posterior_encoder = True |
|
else: |
|
print("Using lin posterior encoder for VITS1") |
|
posterior_channels = hps.data.filter_length // 2 + 1 |
|
hps.data.use_mel_posterior_encoder = False |
|
|
|
net_g = SynthesizerTrn( |
|
len(symbols), |
|
posterior_channels, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model |
|
) |
|
_ = net_g.eval() |
|
|
|
_ = utils.load_checkpoint(MODEL_PATH, net_g, None) |
|
|
|
stn_tst = get_text(TEXT, hps) |
|
|
|
with torch.no_grad(): |
|
|
|
for i in range(0,hps.data.n_speakers): |
|
start = time.time() |
|
x_tst = stn_tst.unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) |
|
sid = torch.LongTensor([i]) |
|
audio = ( |
|
net_g.infer( |
|
x_tst, |
|
x_tst_lengths, |
|
sid=sid, |
|
noise_scale=0.667, |
|
noise_scale_w=0.8, |
|
length_scale=1, |
|
)[0][0, 0] |
|
.data |
|
.float() |
|
.numpy() |
|
) |
|
print(i, time.time() - start) |
|
write(data=audio, rate=hps.data.sampling_rate, filename=f"test_{LANG}_{i}.wav") |
|
|