reza-aditya
commited on
Commit
•
c5ceb0d
1
Parent(s):
771e52f
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1671.41 +/- 322.64
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fcee78b4c81ca0d696f170eccbd13287c6ed54c9a5470665c50b3219de8d370
|
3 |
+
size 129195
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd2dad50050>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd2dad500e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd2dad50170>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd2dad50200>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd2dad50290>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd2dad50320>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd2dad503b0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd2dad50440>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd2dad504d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd2dad50560>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd2dad505f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd2dad8ebd0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1668528675187618192,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAWLiWvvlfOT2nfzA/PpQYQL82t7wpvZg/kHmWPiG2XL9cflQ/lYjivvZWdz7Ydhk/ppHHvlAJSsB/YAw/CrxRvzyMLz/VegvAUoIuP6lfeT/MSyy/Rlm2v4m4Sr8za1W6doEJP4JDG8DJ8M8+AS7LvzmqEj7f4Yw/xV4PPzyHij+TEz2/yn5dPrTJkT8nM2e+LfTWPm0r27/nT4U/ZaXGPsPv1b/D/L7AOmVcv0fsOcCldIg+z7byv9EAQj/wlfg8HANVv7wXFz0MUkq/pHzFvHaBCT+CQxvAyfDPPgEuy79mRss+6pSXv1dXx76XEwVAJbZYv9RjMD/SvJI+OKImv/A+Rb+ltzq/oiZmP5f6Lj9G6aG/pbcxwMnLn74/lTK+tCaZvRSBJ8D4Jro+U55YP+vLVL+OQsQ8dT5Kv8KWlbx2gQk/IQzTPsnwzz4BLsu/xs4iu2MBiz737zk/thzwP20FZT9Weto+RMFJP6bGrL4T3FA/J1shv5ynL79Tl2U+kg4KPRuTeT+1tYe+mAkFQAw+wz8ZrSq9AX02Pw2jr78iaVW/brd3PeCcwL5bZPI+hk3uvyEM0z5elR3ApUYhP5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAKqbrrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBOxvs9AAAAAOfn+78AAAAAHKfsvQAAAAA/7OU/AAAAACVkqT0AAAAAe9EAQAAAAACvecW9AAAAAMAN5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoHK0zAACAPwAAAAAAAAAAAAAAAAAAAAAAAACATEqfPQAAAAAGvNy/AAAAAEczlT0AAAAAsaH4PwAAAAAFp8o8AAAAAA0m6T8AAAAA8B+tPAAAAADeqfm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs65HtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHK8Xr0AAAAAAEX+vwAAAAB4DZE9AAAAAGUP8T8AAAAA5hTzvQAAAADGLeo/AAAAAIUKAz4AAAAAAk7qvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CMLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDf/do9AAAAAD7Q278AAAAA7C2uvAAAAABw5+E/AAAAAOKqZTsAAAAAUT4BQAAAAAC3dgK8AAAAADRa4r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJsmwieNDMOMAWyUTegDjAF0lEdAqeIMpEx7A3V9lChoBkdAl4MvY4ACGWgHTegDaAhHQKnjqZAprk91fZQoaAZHQJK8T/cWTHNoB03oA2gIR0Cp6bpMxoIwdX2UKGgGR0CZVHs2NvOyaAdN6ANoCEdAqe2Shew9q3V9lChoBkdAk7c7aZhKDmgHTegDaAhHQKnvim7aqS51fZQoaAZHQJgkARywOe9oB03oA2gIR0Cp8SmRvFWGdX2UKGgGR0CaX95IH1OCaAdN6ANoCEdAqfdIfdRBNXV9lChoBkdAlPX+1F6RhmgHTegDaAhHQKn7LRl6JIl1fZQoaAZHQJXRxzijtXxoB03oA2gIR0Cp/SBMajvedX2UKGgGR0CWbpDhLoOhaAdN6ANoCEdAqf7DSJCSinV9lChoBkdAkRFsqrilzmgHTegDaAhHQKoE5Y6nzhB1fZQoaAZHQHSrTKYAsCloB03oA2gIR0CqCMcgIQe4dX2UKGgGR0CWK/cclw98aAdN6ANoCEdAqgq6pxWDH3V9lChoBkdAmWZPqkdmx2gHTegDaAhHQKoMZnoPkJd1fZQoaAZHQJl61Y2bXpZoB03oA2gIR0CqEoPwNLDidX2UKGgGR0CYeAcM3IdVaAdN6ANoCEdAqhZKTY/Vy3V9lChoBkdAloMRbB42TGgHTegDaAhHQKoYK8cuJ1t1fZQoaAZHQJZG87p3X7NoB03oA2gIR0CqGcFHBk7PdX2UKGgGR0CX+AwwCbMHaAdN6ANoCEdAqh+9+NLlFXV9lChoBkdAnJDYjGDL82gHTegDaAhHQKojeRHww0x1fZQoaAZHQJgwMoXsPatoB03oA2gIR0CqJWU9yLhrdX2UKGgGR0CSLgrFwT/RaAdN6ANoCEdAqib5XS0BwXV9lChoBkdAmakOIhyKemgHTegDaAhHQKotA/3WWhR1fZQoaAZHQI1gq0WuX/poB03oA2gIR0CqMOci4axYdX2UKGgGR0CSGZFYMfA9aAdN6ANoCEdAqjLZcVxjrnV9lChoBkdAmSdw3gk1M2gHTegDaAhHQKo0crR0EHN1fZQoaAZHQJMtk5q/M4doB03oA2gIR0CqOyrs0HhTdX2UKGgGR0CXtXgXuVopaAdN6ANoCEdAqkCs7dSEUXV9lChoBkdAmyYTYAbQ1WgHTegDaAhHQKpClqesgdR1fZQoaAZHQJVHoBEKE39oB03oA2gIR0CqRCrcCYCydX2UKGgGR0CYtVrJbMX8aAdN6ANoCEdAqkoyCaqjrXV9lChoBkdAldp9UwSJ0mgHTegDaAhHQKpOBD0Dlo11fZQoaAZHQJn2GRwIdENoB03oA2gIR0CqT+GKhtcfdX2UKGgGR0CXgQglnh86aAdN6ANoCEdAqlGJYq5LAnV9lChoBkdAmwNjaPCEYmgHTegDaAhHQKpXkhbGFSN1fZQoaAZHQJS/FwAEMb5oB03oA2gIR0CqW2WrwOOKdX2UKGgGR0CYRKlnAZbZaAdN6ANoCEdAql1NBfKISHV9lChoBkdAlzTM9SuQqGgHTegDaAhHQKpe7AMUh3d1fZQoaAZHQJkZ5EhJRO1oB03oA2gIR0CqZPijDbaidX2UKGgGR0CY5eO58Sf2aAdN6ANoCEdAqmjo97ngYXV9lChoBkdAmDRZwn6VMWgHTegDaAhHQKpq1QXyiEh1fZQoaAZHQJgCBJ2+wkhoB03oA2gIR0CqbG79ycTbdX2UKGgGR0CaYGEhJRO2aAdN6ANoCEdAqnKDhisnzHV9lChoBkdAm7eZM+NcW2gHTegDaAhHQKp2Wotthux1fZQoaAZHQJrvnFtKqXFoB03oA2gIR0CqeDw/5ckddX2UKGgGR0CYbxD7ZWaMaAdN6ANoCEdAqnn3y08eS3V9lChoBkdAmguTvZyuIWgHTegDaAhHQKqADBWPtD51fZQoaAZHQJGEcGRmseZoB03oA2gIR0Cqg+Gw7kn1dX2UKGgGR0CcCK4keIVNaAdN6ANoCEdAqoXfI0ZWJnV9lChoBkdAm80Gplz2e2gHTegDaAhHQKqHejzqbBp1fZQoaAZHQJjCpujynUFoB03oA2gIR0CqjYSeI2wWdX2UKGgGR0CcG9n8baRIaAdN6ANoCEdAqpFYRsdkrnV9lChoBkdAm4PGax5cDGgHTegDaAhHQKqTSF6Avtd1fZQoaAZHQJvtcLBsQ/ZoB03oA2gIR0CqlOTjFQ2udX2UKGgGR0CRIEjXWe6JaAdN6ANoCEdAqpsDrE9+w3V9lChoBkdAmkjrw8W9DmgHTegDaAhHQKqe5987ZFp1fZQoaAZHQJMGkuanaWZoB03oA2gIR0CqoMn9ehPCdX2UKGgGR0CRkGt0V8CxaAdN6ANoCEdAqqJ542S+xnV9lChoBkdAlOE8FINEw2gHTegDaAhHQKqoq32EkB11fZQoaAZHQJXFvqbBoEloB03oA2gIR0CqrI3Onl4kdX2UKGgGR0B72MqDsdDIaAdN6ANoCEdAqq58UfxMFnV9lChoBkdAe8vsRg7YCmgHTegDaAhHQKqwIqp97Wx1fZQoaAZHQHxqpQYUFjdoB03oA2gIR0CqtkR+z+m4dX2UKGgGR0CHvJX+VC5VaAdN6ANoCEdAqroSWszVMHV9lChoBkdAlV+uI/JNkGgHTegDaAhHQKq8ACXhOxl1fZQoaAZHQIfZq1Cw8nxoB03oA2gIR0CqvaJs41gqdX2UKGgGR0CXcdRFqi48aAdN6ANoCEdAqsOvk1dgOXV9lChoBkdAluDQDeTFEWgHTegDaAhHQKrHmCtihFp1fZQoaAZHQJI5rf3vhIhoB03oA2gIR0CqyYN65XlsdX2UKGgGR0CL/r2fTTfBaAdN6ANoCEdAqssZdOZb6nV9lChoBkdAlO7Ti4rjHWgHTegDaAhHQKrRPTaTOgR1fZQoaAZHQJhe+VGCqZNoB03oA2gIR0Cq1ZWWyC4CdX2UKGgGR0CXdBoTwlSkaAdN6ANoCEdAqth699MK1HV9lChoBkdAid5oDYAbQ2gHTegDaAhHQKra73Sro4d1fZQoaAZHQJhMZ63RXwNoB03oA2gIR0Cq4Pf3FkxzdX2UKGgGR0CX8C4T9KmLaAdN6ANoCEdAquS5TfixV3V9lChoBkdAmznXdj5KvmgHTegDaAhHQKrmns54nnd1fZQoaAZHQJeY0L5RCQdoB03oA2gIR0Cq6EV2Rq46dX2UKGgGR0CaXSwNsnAqaAdN6ANoCEdAqu5IXwb2lHV9lChoBkdAmjgUr08NhGgHTegDaAhHQKryDA3T/hl1fZQoaAZHQJUtCAc1fmdoB03oA2gIR0Cq8/UIcBEKdX2UKGgGR0CZ1ayrxRVIaAdN6ANoCEdAqvWfGQ0XQHV9lChoBkdAmVsj1wo9cWgHTegDaAhHQKr7pO4XoDB1fZQoaAZHQJpZWA+Y+jdoB03oA2gIR0Cq/5GpuMuOdX2UKGgGR0CZBKqGDcubaAdN6ANoCEdAqwF+fPHDJnV9lChoBkdAmTwI/iYLLWgHTegDaAhHQKsDFglWwNd1fZQoaAZHQJrjZlEqlP9oB03oA2gIR0CrCRYekpI+dX2UKGgGR0CYYqjS5RTCaAdN6ANoCEdAqwzmtSydF3V9lChoBkdAmCSzspoboGgHTegDaAhHQKsO1+dbxEx1fZQoaAZHQJeVaWVu76JoB03oA2gIR0CrEHh5gPVedX2UKGgGR0CboN6/Zdv9aAdN6ANoCEdAqxaXbGm1pnV9lChoBkdAm4PtEofCAWgHTegDaAhHQKsadC+lCTl1fZQoaAZHQJpHXVOKwZBoB03oA2gIR0CrHFc9wFTvdX2UKGgGR0CaQTlRP421aAdN6ANoCEdAqx31qgyuZHV9lChoBkdAmHoMWfseGWgHTegDaAhHQKsj6mCROlB1fZQoaAZHQJvsCFN+LFZoB03oA2gIR0CrJ7jzZpSKdX2UKGgGR0CZQtQdCE6DaAdN6ANoCEdAqymn1QIldHV9lChoBkdAmB05GBnSOWgHTegDaAhHQKsrPag26091fZQoaAZHQJaOk2S+xnpoB03oA2gIR0CrMTnzpX6qdX2UKGgGR0CaIAhP0qYraAdN6ANoCEdAqzUuZLIxQHVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77b4ac03cadc737264b0cf1279791ed294af1af0e918d146e73bd8e47b8bb882
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d591a8ddf15794166e529a35c6ff1e12d1370b675cdaa7ed9a3828ec303d8b70
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd2dad50050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd2dad500e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd2dad50170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd2dad50200>", "_build": "<function ActorCriticPolicy._build at 0x7fd2dad50290>", "forward": "<function ActorCriticPolicy.forward at 0x7fd2dad50320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd2dad503b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd2dad50440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd2dad504d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd2dad50560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd2dad505f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd2dad8ebd0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668528675187618192, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAWLiWvvlfOT2nfzA/PpQYQL82t7wpvZg/kHmWPiG2XL9cflQ/lYjivvZWdz7Ydhk/ppHHvlAJSsB/YAw/CrxRvzyMLz/VegvAUoIuP6lfeT/MSyy/Rlm2v4m4Sr8za1W6doEJP4JDG8DJ8M8+AS7LvzmqEj7f4Yw/xV4PPzyHij+TEz2/yn5dPrTJkT8nM2e+LfTWPm0r27/nT4U/ZaXGPsPv1b/D/L7AOmVcv0fsOcCldIg+z7byv9EAQj/wlfg8HANVv7wXFz0MUkq/pHzFvHaBCT+CQxvAyfDPPgEuy79mRss+6pSXv1dXx76XEwVAJbZYv9RjMD/SvJI+OKImv/A+Rb+ltzq/oiZmP5f6Lj9G6aG/pbcxwMnLn74/lTK+tCaZvRSBJ8D4Jro+U55YP+vLVL+OQsQ8dT5Kv8KWlbx2gQk/IQzTPsnwzz4BLsu/xs4iu2MBiz737zk/thzwP20FZT9Weto+RMFJP6bGrL4T3FA/J1shv5ynL79Tl2U+kg4KPRuTeT+1tYe+mAkFQAw+wz8ZrSq9AX02Pw2jr78iaVW/brd3PeCcwL5bZPI+hk3uvyEM0z5elR3ApUYhP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAKqbrrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBOxvs9AAAAAOfn+78AAAAAHKfsvQAAAAA/7OU/AAAAACVkqT0AAAAAe9EAQAAAAACvecW9AAAAAMAN5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoHK0zAACAPwAAAAAAAAAAAAAAAAAAAAAAAACATEqfPQAAAAAGvNy/AAAAAEczlT0AAAAAsaH4PwAAAAAFp8o8AAAAAA0m6T8AAAAA8B+tPAAAAADeqfm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs65HtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHK8Xr0AAAAAAEX+vwAAAAB4DZE9AAAAAGUP8T8AAAAA5hTzvQAAAADGLeo/AAAAAIUKAz4AAAAAAk7qvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CMLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDf/do9AAAAAD7Q278AAAAA7C2uvAAAAABw5+E/AAAAAOKqZTsAAAAAUT4BQAAAAAC3dgK8AAAAADRa4r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJsmwieNDMOMAWyUTegDjAF0lEdAqeIMpEx7A3V9lChoBkdAl4MvY4ACGWgHTegDaAhHQKnjqZAprk91fZQoaAZHQJK8T/cWTHNoB03oA2gIR0Cp6bpMxoIwdX2UKGgGR0CZVHs2NvOyaAdN6ANoCEdAqe2Shew9q3V9lChoBkdAk7c7aZhKDmgHTegDaAhHQKnvim7aqS51fZQoaAZHQJgkARywOe9oB03oA2gIR0Cp8SmRvFWGdX2UKGgGR0CaX95IH1OCaAdN6ANoCEdAqfdIfdRBNXV9lChoBkdAlPX+1F6RhmgHTegDaAhHQKn7LRl6JIl1fZQoaAZHQJXRxzijtXxoB03oA2gIR0Cp/SBMajvedX2UKGgGR0CWbpDhLoOhaAdN6ANoCEdAqf7DSJCSinV9lChoBkdAkRFsqrilzmgHTegDaAhHQKoE5Y6nzhB1fZQoaAZHQHSrTKYAsCloB03oA2gIR0CqCMcgIQe4dX2UKGgGR0CWK/cclw98aAdN6ANoCEdAqgq6pxWDH3V9lChoBkdAmWZPqkdmx2gHTegDaAhHQKoMZnoPkJd1fZQoaAZHQJl61Y2bXpZoB03oA2gIR0CqEoPwNLDidX2UKGgGR0CYeAcM3IdVaAdN6ANoCEdAqhZKTY/Vy3V9lChoBkdAloMRbB42TGgHTegDaAhHQKoYK8cuJ1t1fZQoaAZHQJZG87p3X7NoB03oA2gIR0CqGcFHBk7PdX2UKGgGR0CX+AwwCbMHaAdN6ANoCEdAqh+9+NLlFXV9lChoBkdAnJDYjGDL82gHTegDaAhHQKojeRHww0x1fZQoaAZHQJgwMoXsPatoB03oA2gIR0CqJWU9yLhrdX2UKGgGR0CSLgrFwT/RaAdN6ANoCEdAqib5XS0BwXV9lChoBkdAmakOIhyKemgHTegDaAhHQKotA/3WWhR1fZQoaAZHQI1gq0WuX/poB03oA2gIR0CqMOci4axYdX2UKGgGR0CSGZFYMfA9aAdN6ANoCEdAqjLZcVxjrnV9lChoBkdAmSdw3gk1M2gHTegDaAhHQKo0crR0EHN1fZQoaAZHQJMtk5q/M4doB03oA2gIR0CqOyrs0HhTdX2UKGgGR0CXtXgXuVopaAdN6ANoCEdAqkCs7dSEUXV9lChoBkdAmyYTYAbQ1WgHTegDaAhHQKpClqesgdR1fZQoaAZHQJVHoBEKE39oB03oA2gIR0CqRCrcCYCydX2UKGgGR0CYtVrJbMX8aAdN6ANoCEdAqkoyCaqjrXV9lChoBkdAldp9UwSJ0mgHTegDaAhHQKpOBD0Dlo11fZQoaAZHQJn2GRwIdENoB03oA2gIR0CqT+GKhtcfdX2UKGgGR0CXgQglnh86aAdN6ANoCEdAqlGJYq5LAnV9lChoBkdAmwNjaPCEYmgHTegDaAhHQKpXkhbGFSN1fZQoaAZHQJS/FwAEMb5oB03oA2gIR0CqW2WrwOOKdX2UKGgGR0CYRKlnAZbZaAdN6ANoCEdAql1NBfKISHV9lChoBkdAlzTM9SuQqGgHTegDaAhHQKpe7AMUh3d1fZQoaAZHQJkZ5EhJRO1oB03oA2gIR0CqZPijDbaidX2UKGgGR0CY5eO58Sf2aAdN6ANoCEdAqmjo97ngYXV9lChoBkdAmDRZwn6VMWgHTegDaAhHQKpq1QXyiEh1fZQoaAZHQJgCBJ2+wkhoB03oA2gIR0CqbG79ycTbdX2UKGgGR0CaYGEhJRO2aAdN6ANoCEdAqnKDhisnzHV9lChoBkdAm7eZM+NcW2gHTegDaAhHQKp2Wotthux1fZQoaAZHQJrvnFtKqXFoB03oA2gIR0CqeDw/5ckddX2UKGgGR0CYbxD7ZWaMaAdN6ANoCEdAqnn3y08eS3V9lChoBkdAmguTvZyuIWgHTegDaAhHQKqADBWPtD51fZQoaAZHQJGEcGRmseZoB03oA2gIR0Cqg+Gw7kn1dX2UKGgGR0CcCK4keIVNaAdN6ANoCEdAqoXfI0ZWJnV9lChoBkdAm80Gplz2e2gHTegDaAhHQKqHejzqbBp1fZQoaAZHQJjCpujynUFoB03oA2gIR0CqjYSeI2wWdX2UKGgGR0CcG9n8baRIaAdN6ANoCEdAqpFYRsdkrnV9lChoBkdAm4PGax5cDGgHTegDaAhHQKqTSF6Avtd1fZQoaAZHQJvtcLBsQ/ZoB03oA2gIR0CqlOTjFQ2udX2UKGgGR0CRIEjXWe6JaAdN6ANoCEdAqpsDrE9+w3V9lChoBkdAmkjrw8W9DmgHTegDaAhHQKqe5987ZFp1fZQoaAZHQJMGkuanaWZoB03oA2gIR0CqoMn9ehPCdX2UKGgGR0CRkGt0V8CxaAdN6ANoCEdAqqJ542S+xnV9lChoBkdAlOE8FINEw2gHTegDaAhHQKqoq32EkB11fZQoaAZHQJXFvqbBoEloB03oA2gIR0CqrI3Onl4kdX2UKGgGR0B72MqDsdDIaAdN6ANoCEdAqq58UfxMFnV9lChoBkdAe8vsRg7YCmgHTegDaAhHQKqwIqp97Wx1fZQoaAZHQHxqpQYUFjdoB03oA2gIR0CqtkR+z+m4dX2UKGgGR0CHvJX+VC5VaAdN6ANoCEdAqroSWszVMHV9lChoBkdAlV+uI/JNkGgHTegDaAhHQKq8ACXhOxl1fZQoaAZHQIfZq1Cw8nxoB03oA2gIR0CqvaJs41gqdX2UKGgGR0CXcdRFqi48aAdN6ANoCEdAqsOvk1dgOXV9lChoBkdAluDQDeTFEWgHTegDaAhHQKrHmCtihFp1fZQoaAZHQJI5rf3vhIhoB03oA2gIR0CqyYN65XlsdX2UKGgGR0CL/r2fTTfBaAdN6ANoCEdAqssZdOZb6nV9lChoBkdAlO7Ti4rjHWgHTegDaAhHQKrRPTaTOgR1fZQoaAZHQJhe+VGCqZNoB03oA2gIR0Cq1ZWWyC4CdX2UKGgGR0CXdBoTwlSkaAdN6ANoCEdAqth699MK1HV9lChoBkdAid5oDYAbQ2gHTegDaAhHQKra73Sro4d1fZQoaAZHQJhMZ63RXwNoB03oA2gIR0Cq4Pf3FkxzdX2UKGgGR0CX8C4T9KmLaAdN6ANoCEdAquS5TfixV3V9lChoBkdAmznXdj5KvmgHTegDaAhHQKrmns54nnd1fZQoaAZHQJeY0L5RCQdoB03oA2gIR0Cq6EV2Rq46dX2UKGgGR0CaXSwNsnAqaAdN6ANoCEdAqu5IXwb2lHV9lChoBkdAmjgUr08NhGgHTegDaAhHQKryDA3T/hl1fZQoaAZHQJUtCAc1fmdoB03oA2gIR0Cq8/UIcBEKdX2UKGgGR0CZ1ayrxRVIaAdN6ANoCEdAqvWfGQ0XQHV9lChoBkdAmVsj1wo9cWgHTegDaAhHQKr7pO4XoDB1fZQoaAZHQJpZWA+Y+jdoB03oA2gIR0Cq/5GpuMuOdX2UKGgGR0CZBKqGDcubaAdN6ANoCEdAqwF+fPHDJnV9lChoBkdAmTwI/iYLLWgHTegDaAhHQKsDFglWwNd1fZQoaAZHQJrjZlEqlP9oB03oA2gIR0CrCRYekpI+dX2UKGgGR0CYYqjS5RTCaAdN6ANoCEdAqwzmtSydF3V9lChoBkdAmCSzspoboGgHTegDaAhHQKsO1+dbxEx1fZQoaAZHQJeVaWVu76JoB03oA2gIR0CrEHh5gPVedX2UKGgGR0CboN6/Zdv9aAdN6ANoCEdAqxaXbGm1pnV9lChoBkdAm4PtEofCAWgHTegDaAhHQKsadC+lCTl1fZQoaAZHQJpHXVOKwZBoB03oA2gIR0CrHFc9wFTvdX2UKGgGR0CaQTlRP421aAdN6ANoCEdAqx31qgyuZHV9lChoBkdAmHoMWfseGWgHTegDaAhHQKsj6mCROlB1fZQoaAZHQJvsCFN+LFZoB03oA2gIR0CrJ7jzZpSKdX2UKGgGR0CZQtQdCE6DaAdN6ANoCEdAqymn1QIldHV9lChoBkdAmB05GBnSOWgHTegDaAhHQKsrPag26091fZQoaAZHQJaOk2S+xnpoB03oA2gIR0CrMTnzpX6qdX2UKGgGR0CaIAhP0qYraAdN6ANoCEdAqzUuZLIxQHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:daab7dfdda52bc33a4c109c1d0533f6d3f85d1f5744154de7f24344a55d227f3
|
3 |
+
size 1043354
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1671.4142195826048, "std_reward": 322.6425015086761, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-15T17:10:15.321978"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f388d104c20f054e8b12f402262212259fdf99d2aeef46bc305dc1b1090988e
|
3 |
+
size 2763
|