init
Browse files- README.md +38 -38
- analogy.forward.json +1 -1
- classification.json +1 -1
- config.json +6 -6
- finetuning_config.json +2 -2
- pytorch_model.bin +2 -2
- relation_mapping.json +0 -0
- special_tokens_map.json +1 -15
- tokenizer.json +2 -4
- tokenizer_config.json +1 -16
README.md
CHANGED
@@ -14,7 +14,7 @@ model-index:
|
|
14 |
metrics:
|
15 |
- name: Accuracy
|
16 |
type: accuracy
|
17 |
-
value: 0.
|
18 |
- task:
|
19 |
name: Analogy Questions (SAT full)
|
20 |
type: multiple-choice-qa
|
@@ -25,7 +25,7 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
-
value: 0.
|
29 |
- task:
|
30 |
name: Analogy Questions (SAT)
|
31 |
type: multiple-choice-qa
|
@@ -36,7 +36,7 @@ model-index:
|
|
36 |
metrics:
|
37 |
- name: Accuracy
|
38 |
type: accuracy
|
39 |
-
value: 0.
|
40 |
- task:
|
41 |
name: Analogy Questions (BATS)
|
42 |
type: multiple-choice-qa
|
@@ -47,7 +47,7 @@ model-index:
|
|
47 |
metrics:
|
48 |
- name: Accuracy
|
49 |
type: accuracy
|
50 |
-
value: 0.
|
51 |
- task:
|
52 |
name: Analogy Questions (Google)
|
53 |
type: multiple-choice-qa
|
@@ -58,7 +58,7 @@ model-index:
|
|
58 |
metrics:
|
59 |
- name: Accuracy
|
60 |
type: accuracy
|
61 |
-
value: 0.
|
62 |
- task:
|
63 |
name: Analogy Questions (U2)
|
64 |
type: multiple-choice-qa
|
@@ -69,7 +69,7 @@ model-index:
|
|
69 |
metrics:
|
70 |
- name: Accuracy
|
71 |
type: accuracy
|
72 |
-
value: 0.
|
73 |
- task:
|
74 |
name: Analogy Questions (U4)
|
75 |
type: multiple-choice-qa
|
@@ -80,7 +80,7 @@ model-index:
|
|
80 |
metrics:
|
81 |
- name: Accuracy
|
82 |
type: accuracy
|
83 |
-
value: 0.
|
84 |
- task:
|
85 |
name: Analogy Questions (ConceptNet Analogy)
|
86 |
type: multiple-choice-qa
|
@@ -91,7 +91,7 @@ model-index:
|
|
91 |
metrics:
|
92 |
- name: Accuracy
|
93 |
type: accuracy
|
94 |
-
value: 0.
|
95 |
- task:
|
96 |
name: Analogy Questions (TREX Analogy)
|
97 |
type: multiple-choice-qa
|
@@ -102,7 +102,7 @@ model-index:
|
|
102 |
metrics:
|
103 |
- name: Accuracy
|
104 |
type: accuracy
|
105 |
-
value: 0.
|
106 |
- task:
|
107 |
name: Analogy Questions (NELL-ONE Analogy)
|
108 |
type: multiple-choice-qa
|
@@ -113,7 +113,7 @@ model-index:
|
|
113 |
metrics:
|
114 |
- name: Accuracy
|
115 |
type: accuracy
|
116 |
-
value: 0.
|
117 |
- task:
|
118 |
name: Lexical Relation Classification (BLESS)
|
119 |
type: classification
|
@@ -124,10 +124,10 @@ model-index:
|
|
124 |
metrics:
|
125 |
- name: F1
|
126 |
type: f1
|
127 |
-
value: 0.
|
128 |
- name: F1 (macro)
|
129 |
type: f1_macro
|
130 |
-
value: 0.
|
131 |
- task:
|
132 |
name: Lexical Relation Classification (CogALexV)
|
133 |
type: classification
|
@@ -138,10 +138,10 @@ model-index:
|
|
138 |
metrics:
|
139 |
- name: F1
|
140 |
type: f1
|
141 |
-
value: 0.
|
142 |
- name: F1 (macro)
|
143 |
type: f1_macro
|
144 |
-
value: 0.
|
145 |
- task:
|
146 |
name: Lexical Relation Classification (EVALution)
|
147 |
type: classification
|
@@ -152,10 +152,10 @@ model-index:
|
|
152 |
metrics:
|
153 |
- name: F1
|
154 |
type: f1
|
155 |
-
value: 0.
|
156 |
- name: F1 (macro)
|
157 |
type: f1_macro
|
158 |
-
value: 0.
|
159 |
- task:
|
160 |
name: Lexical Relation Classification (K&H+N)
|
161 |
type: classification
|
@@ -166,10 +166,10 @@ model-index:
|
|
166 |
metrics:
|
167 |
- name: F1
|
168 |
type: f1
|
169 |
-
value: 0.
|
170 |
- name: F1 (macro)
|
171 |
type: f1_macro
|
172 |
-
value: 0.
|
173 |
- task:
|
174 |
name: Lexical Relation Classification (ROOT09)
|
175 |
type: classification
|
@@ -180,34 +180,34 @@ model-index:
|
|
180 |
metrics:
|
181 |
- name: F1
|
182 |
type: f1
|
183 |
-
value: 0.
|
184 |
- name: F1 (macro)
|
185 |
type: f1_macro
|
186 |
-
value: 0.
|
187 |
|
188 |
---
|
189 |
# relbert/relbert-roberta-base-nce-semeval2012-0
|
190 |
|
191 |
-
RelBERT based on [roberta-
|
192 |
This model achieves the following results on the relation understanding tasks:
|
193 |
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-0/raw/main/analogy.forward.json)):
|
194 |
-
- Accuracy on SAT (full): 0.
|
195 |
-
- Accuracy on SAT: 0.
|
196 |
-
- Accuracy on BATS: 0.
|
197 |
-
- Accuracy on U2: 0.
|
198 |
-
- Accuracy on U4: 0.
|
199 |
-
- Accuracy on Google: 0.
|
200 |
-
- Accuracy on ConceptNet Analogy: 0.
|
201 |
-
- Accuracy on T-Rex Analogy: 0.
|
202 |
-
- Accuracy on NELL-ONE Analogy: 0.
|
203 |
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-0/raw/main/classification.json)):
|
204 |
-
- Micro F1 score on BLESS: 0.
|
205 |
-
- Micro F1 score on CogALexV: 0.
|
206 |
-
- Micro F1 score on EVALution: 0.
|
207 |
-
- Micro F1 score on K&H+N: 0.
|
208 |
-
- Micro F1 score on ROOT09: 0.
|
209 |
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-0/raw/main/relation_mapping.json)):
|
210 |
-
- Accuracy on Relation Mapping: 0.
|
211 |
|
212 |
|
213 |
### Usage
|
@@ -224,7 +224,7 @@ vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (n_dim, )
|
|
224 |
|
225 |
### Training hyperparameters
|
226 |
|
227 |
-
- model: roberta-
|
228 |
- max_length: 64
|
229 |
- epoch: 10
|
230 |
- batch: 32
|
@@ -239,7 +239,7 @@ vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (n_dim, )
|
|
239 |
- split_valid: validation
|
240 |
- loss_function: nce
|
241 |
- classification_loss: False
|
242 |
-
- loss_function_config: {'temperature': 0.05, 'num_negative':
|
243 |
- augment_negative_by_positive: True
|
244 |
|
245 |
See the full configuration at [config file](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-0/raw/main/finetuning_config.json).
|
|
|
14 |
metrics:
|
15 |
- name: Accuracy
|
16 |
type: accuracy
|
17 |
+
value: 0.817202380952381
|
18 |
- task:
|
19 |
name: Analogy Questions (SAT full)
|
20 |
type: multiple-choice-qa
|
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
+
value: 0.5989304812834224
|
29 |
- task:
|
30 |
name: Analogy Questions (SAT)
|
31 |
type: multiple-choice-qa
|
|
|
36 |
metrics:
|
37 |
- name: Accuracy
|
38 |
type: accuracy
|
39 |
+
value: 0.6083086053412463
|
40 |
- task:
|
41 |
name: Analogy Questions (BATS)
|
42 |
type: multiple-choice-qa
|
|
|
47 |
metrics:
|
48 |
- name: Accuracy
|
49 |
type: accuracy
|
50 |
+
value: 0.7031684269038355
|
51 |
- task:
|
52 |
name: Analogy Questions (Google)
|
53 |
type: multiple-choice-qa
|
|
|
58 |
metrics:
|
59 |
- name: Accuracy
|
60 |
type: accuracy
|
61 |
+
value: 0.892
|
62 |
- task:
|
63 |
name: Analogy Questions (U2)
|
64 |
type: multiple-choice-qa
|
|
|
69 |
metrics:
|
70 |
- name: Accuracy
|
71 |
type: accuracy
|
72 |
+
value: 0.5964912280701754
|
73 |
- task:
|
74 |
name: Analogy Questions (U4)
|
75 |
type: multiple-choice-qa
|
|
|
80 |
metrics:
|
81 |
- name: Accuracy
|
82 |
type: accuracy
|
83 |
+
value: 0.5740740740740741
|
84 |
- task:
|
85 |
name: Analogy Questions (ConceptNet Analogy)
|
86 |
type: multiple-choice-qa
|
|
|
91 |
metrics:
|
92 |
- name: Accuracy
|
93 |
type: accuracy
|
94 |
+
value: 0.3976510067114094
|
95 |
- task:
|
96 |
name: Analogy Questions (TREX Analogy)
|
97 |
type: multiple-choice-qa
|
|
|
102 |
metrics:
|
103 |
- name: Accuracy
|
104 |
type: accuracy
|
105 |
+
value: 0.6666666666666666
|
106 |
- task:
|
107 |
name: Analogy Questions (NELL-ONE Analogy)
|
108 |
type: multiple-choice-qa
|
|
|
113 |
metrics:
|
114 |
- name: Accuracy
|
115 |
type: accuracy
|
116 |
+
value: 0.62
|
117 |
- task:
|
118 |
name: Lexical Relation Classification (BLESS)
|
119 |
type: classification
|
|
|
124 |
metrics:
|
125 |
- name: F1
|
126 |
type: f1
|
127 |
+
value: 0.8998041283712521
|
128 |
- name: F1 (macro)
|
129 |
type: f1_macro
|
130 |
+
value: 0.896201243435411
|
131 |
- task:
|
132 |
name: Lexical Relation Classification (CogALexV)
|
133 |
type: classification
|
|
|
138 |
metrics:
|
139 |
- name: F1
|
140 |
type: f1
|
141 |
+
value: 0.8370892018779342
|
142 |
- name: F1 (macro)
|
143 |
type: f1_macro
|
144 |
+
value: 0.6583174043371445
|
145 |
- task:
|
146 |
name: Lexical Relation Classification (EVALution)
|
147 |
type: classification
|
|
|
152 |
metrics:
|
153 |
- name: F1
|
154 |
type: f1
|
155 |
+
value: 0.6419284940411701
|
156 |
- name: F1 (macro)
|
157 |
type: f1_macro
|
158 |
+
value: 0.6294309369547718
|
159 |
- task:
|
160 |
name: Lexical Relation Classification (K&H+N)
|
161 |
type: classification
|
|
|
166 |
metrics:
|
167 |
- name: F1
|
168 |
type: f1
|
169 |
+
value: 0.9396953467343674
|
170 |
- name: F1 (macro)
|
171 |
type: f1_macro
|
172 |
+
value: 0.8459283973092365
|
173 |
- task:
|
174 |
name: Lexical Relation Classification (ROOT09)
|
175 |
type: classification
|
|
|
180 |
metrics:
|
181 |
- name: F1
|
182 |
type: f1
|
183 |
+
value: 0.8815418364149169
|
184 |
- name: F1 (macro)
|
185 |
type: f1_macro
|
186 |
+
value: 0.879329189992711
|
187 |
|
188 |
---
|
189 |
# relbert/relbert-roberta-base-nce-semeval2012-0
|
190 |
|
191 |
+
RelBERT based on [roberta-base](https://huggingface.co/roberta-base) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
|
192 |
This model achieves the following results on the relation understanding tasks:
|
193 |
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-0/raw/main/analogy.forward.json)):
|
194 |
+
- Accuracy on SAT (full): 0.5989304812834224
|
195 |
+
- Accuracy on SAT: 0.6083086053412463
|
196 |
+
- Accuracy on BATS: 0.7031684269038355
|
197 |
+
- Accuracy on U2: 0.5964912280701754
|
198 |
+
- Accuracy on U4: 0.5740740740740741
|
199 |
+
- Accuracy on Google: 0.892
|
200 |
+
- Accuracy on ConceptNet Analogy: 0.3976510067114094
|
201 |
+
- Accuracy on T-Rex Analogy: 0.6666666666666666
|
202 |
+
- Accuracy on NELL-ONE Analogy: 0.62
|
203 |
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-0/raw/main/classification.json)):
|
204 |
+
- Micro F1 score on BLESS: 0.8998041283712521
|
205 |
+
- Micro F1 score on CogALexV: 0.8370892018779342
|
206 |
+
- Micro F1 score on EVALution: 0.6419284940411701
|
207 |
+
- Micro F1 score on K&H+N: 0.9396953467343674
|
208 |
+
- Micro F1 score on ROOT09: 0.8815418364149169
|
209 |
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-0/raw/main/relation_mapping.json)):
|
210 |
+
- Accuracy on Relation Mapping: 0.817202380952381
|
211 |
|
212 |
|
213 |
### Usage
|
|
|
224 |
|
225 |
### Training hyperparameters
|
226 |
|
227 |
+
- model: roberta-base
|
228 |
- max_length: 64
|
229 |
- epoch: 10
|
230 |
- batch: 32
|
|
|
239 |
- split_valid: validation
|
240 |
- loss_function: nce
|
241 |
- classification_loss: False
|
242 |
+
- loss_function_config: {'temperature': 0.05, 'num_negative': 400, 'num_positive': 10}
|
243 |
- augment_negative_by_positive: True
|
244 |
|
245 |
See the full configuration at [config file](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-0/raw/main/finetuning_config.json).
|
analogy.forward.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"semeval2012_relational_similarity/validation": 0.
|
|
|
1 |
+
{"semeval2012_relational_similarity/validation": 0.7848101265822784, "scan/test": 0.2592821782178218, "sat_full/test": 0.5989304812834224, "sat/test": 0.6083086053412463, "u2/test": 0.5964912280701754, "u4/test": 0.5740740740740741, "google/test": 0.892, "bats/test": 0.7031684269038355, "t_rex_relational_similarity/test": 0.6666666666666666, "conceptnet_relational_similarity/test": 0.3976510067114094, "nell_relational_similarity/test": 0.62, "scan/validation": 0.25842696629213485, "sat/validation": 0.5135135135135135, "u2/validation": 0.4583333333333333, "u4/validation": 0.6458333333333334, "google/validation": 0.96, "bats/validation": 0.7738693467336684, "t_rex_relational_similarity/validation": 0.2661290322580645, "conceptnet_relational_similarity/validation": 0.32823741007194246, "nell_relational_similarity/validation": 0.575}
|
classification.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.
|
|
|
1 |
+
{"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8998041283712521, "test/f1_macro": 0.896201243435411, "test/f1_micro": 0.8998041283712521, "test/p_macro": 0.8876829436591316, "test/p_micro": 0.8998041283712521, "test/r_macro": 0.9054007585142311, "test/r_micro": 0.8998041283712521}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8370892018779342, "test/f1_macro": 0.6583174043371445, "test/f1_micro": 0.8370892018779342, "test/p_macro": 0.6822907887970884, "test/p_micro": 0.8370892018779342, "test/r_macro": 0.6384370436284232, "test/r_micro": 0.8370892018779342}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6419284940411701, "test/f1_macro": 0.6294309369547718, "test/f1_micro": 0.6419284940411701, "test/p_macro": 0.6360186480100325, "test/p_micro": 0.6419284940411701, "test/r_macro": 0.6300178037199379, "test/r_micro": 0.6419284940411701}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9396953467343674, "test/f1_macro": 0.8459283973092365, "test/f1_micro": 0.9396953467343674, "test/p_macro": 0.8614600859106621, "test/p_micro": 0.9396953467343674, "test/r_macro": 0.8351465630922283, "test/r_micro": 0.9396953467343674}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8815418364149169, "test/f1_macro": 0.879329189992711, "test/f1_micro": 0.8815418364149169, "test/p_macro": 0.8763389203201842, "test/p_micro": 0.8815418364149169, "test/r_macro": 0.882560877928503, "test/r_micro": 0.8815418364149169}}
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "roberta-
|
3 |
"architectures": [
|
4 |
"RobertaModel"
|
5 |
],
|
@@ -9,14 +9,14 @@
|
|
9 |
"eos_token_id": 2,
|
10 |
"hidden_act": "gelu",
|
11 |
"hidden_dropout_prob": 0.1,
|
12 |
-
"hidden_size":
|
13 |
"initializer_range": 0.02,
|
14 |
-
"intermediate_size":
|
15 |
"layer_norm_eps": 1e-05,
|
16 |
"max_position_embeddings": 514,
|
17 |
"model_type": "roberta",
|
18 |
-
"num_attention_heads":
|
19 |
-
"num_hidden_layers":
|
20 |
"pad_token_id": 1,
|
21 |
"position_embedding_type": "absolute",
|
22 |
"relbert_config": {
|
@@ -24,7 +24,7 @@
|
|
24 |
"template": "Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>"
|
25 |
},
|
26 |
"torch_dtype": "float32",
|
27 |
-
"transformers_version": "4.
|
28 |
"type_vocab_size": 1,
|
29 |
"use_cache": true,
|
30 |
"vocab_size": 50265
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "roberta-base",
|
3 |
"architectures": [
|
4 |
"RobertaModel"
|
5 |
],
|
|
|
9 |
"eos_token_id": 2,
|
10 |
"hidden_act": "gelu",
|
11 |
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
"layer_norm_eps": 1e-05,
|
16 |
"max_position_embeddings": 514,
|
17 |
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
"pad_token_id": 1,
|
21 |
"position_embedding_type": "absolute",
|
22 |
"relbert_config": {
|
|
|
24 |
"template": "Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>"
|
25 |
},
|
26 |
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.16.2",
|
28 |
"type_vocab_size": 1,
|
29 |
"use_cache": true,
|
30 |
"vocab_size": 50265
|
finetuning_config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"template": "Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>",
|
3 |
-
"model": "roberta-
|
4 |
"max_length": 64,
|
5 |
"epoch": 10,
|
6 |
"batch": 32,
|
@@ -17,7 +17,7 @@
|
|
17 |
"classification_loss": false,
|
18 |
"loss_function_config": {
|
19 |
"temperature": 0.05,
|
20 |
-
"num_negative":
|
21 |
"num_positive": 10
|
22 |
},
|
23 |
"augment_negative_by_positive": true
|
|
|
1 |
{
|
2 |
"template": "Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>",
|
3 |
+
"model": "roberta-base",
|
4 |
"max_length": 64,
|
5 |
"epoch": 10,
|
6 |
"batch": 32,
|
|
|
17 |
"classification_loss": false,
|
18 |
"loss_function_config": {
|
19 |
"temperature": 0.05,
|
20 |
+
"num_negative": 400,
|
21 |
"num_positive": 10
|
22 |
},
|
23 |
"augment_negative_by_positive": true
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c94a92b29ec3435777fd39e26c2ad122e32bb0d45e73dc050bca78cbc525fd26
|
3 |
+
size 498663921
|
relation_mapping.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
CHANGED
@@ -1,15 +1 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": "<s>",
|
3 |
-
"cls_token": "<s>",
|
4 |
-
"eos_token": "</s>",
|
5 |
-
"mask_token": {
|
6 |
-
"content": "<mask>",
|
7 |
-
"lstrip": true,
|
8 |
-
"normalized": false,
|
9 |
-
"rstrip": false,
|
10 |
-
"single_word": false
|
11 |
-
},
|
12 |
-
"pad_token": "<pad>",
|
13 |
-
"sep_token": "</s>",
|
14 |
-
"unk_token": "<unk>"
|
15 |
-
}
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer.json
CHANGED
@@ -53,8 +53,7 @@
|
|
53 |
"pre_tokenizer": {
|
54 |
"type": "ByteLevel",
|
55 |
"add_prefix_space": false,
|
56 |
-
"trim_offsets": true
|
57 |
-
"use_regex": true
|
58 |
},
|
59 |
"post_processor": {
|
60 |
"type": "RobertaProcessing",
|
@@ -72,8 +71,7 @@
|
|
72 |
"decoder": {
|
73 |
"type": "ByteLevel",
|
74 |
"add_prefix_space": true,
|
75 |
-
"trim_offsets": true
|
76 |
-
"use_regex": true
|
77 |
},
|
78 |
"model": {
|
79 |
"type": "BPE",
|
|
|
53 |
"pre_tokenizer": {
|
54 |
"type": "ByteLevel",
|
55 |
"add_prefix_space": false,
|
56 |
+
"trim_offsets": true
|
|
|
57 |
},
|
58 |
"post_processor": {
|
59 |
"type": "RobertaProcessing",
|
|
|
71 |
"decoder": {
|
72 |
"type": "ByteLevel",
|
73 |
"add_prefix_space": true,
|
74 |
+
"trim_offsets": true
|
|
|
75 |
},
|
76 |
"model": {
|
77 |
"type": "BPE",
|
tokenizer_config.json
CHANGED
@@ -1,16 +1 @@
|
|
1 |
-
{
|
2 |
-
"add_prefix_space": false,
|
3 |
-
"bos_token": "<s>",
|
4 |
-
"cls_token": "<s>",
|
5 |
-
"eos_token": "</s>",
|
6 |
-
"errors": "replace",
|
7 |
-
"mask_token": "<mask>",
|
8 |
-
"model_max_length": 512,
|
9 |
-
"name_or_path": "roberta-large",
|
10 |
-
"pad_token": "<pad>",
|
11 |
-
"sep_token": "</s>",
|
12 |
-
"special_tokens_map_file": null,
|
13 |
-
"tokenizer_class": "RobertaTokenizer",
|
14 |
-
"trim_offsets": true,
|
15 |
-
"unk_token": "<unk>"
|
16 |
-
}
|
|
|
1 |
+
{"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "add_prefix_space": false, "errors": "replace", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": "<mask>", "trim_offsets": true, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "roberta-base", "tokenizer_class": "RobertaTokenizer"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|