ramonachristen
commited on
Commit
•
381d030
1
Parent(s):
1a0a541
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- rcds/MultiLegalNeg
|
4 |
+
language:
|
5 |
+
- de
|
6 |
+
- fr
|
7 |
+
- it
|
8 |
+
- en
|
9 |
+
tags:
|
10 |
+
- legal
|
11 |
+
---
|
12 |
+
# Model Card for joelito/legal-swiss-longformer-base
|
13 |
+
|
14 |
+
This model is based on [XLM-R-Base](https://huggingface.co/xlm-roberta-base).
|
15 |
+
It was pretrained on negation scope resolution using [NegBERT](https://github.com/adityak6798/Transformers-For-Negation-and-Speculation/blob/master/Transformers_for_Negation_and_Speculation.ipynb) ([Khandelwal and Sawant 2020](https://arxiv.org/abs/1911.04211))
|
16 |
+
For training we used the [Multi Legal Neg Dataset](https://huggingface.co/datasets/rcds/MultiLegalNeg), a multilingual dataset of legal data annotated for negation cues and scopes, ConanDoyle-neg ([
|
17 |
+
Morante and Blanco. 2012](https://aclanthology.org/S12-1035/)), SFU Review ([Konstantinova et al. 2012](http://www.lrec-conf.org/proceedings/lrec2012/pdf/533_Paper.pdf)), BioScope ([Szarvas et al. 2008](https://aclanthology.org/W08-0606/)) and Dalloux ([Dalloux et al. 2020](https://clementdalloux.fr/?page_id=28)).
|
18 |
+
|
19 |
+
## Model Details
|
20 |
+
|
21 |
+
### Model Description
|
22 |
+
|
23 |
+
- **Model type:** Transformer-based language model (XLM-R-base)
|
24 |
+
- **Languages:** de, fr, it, en
|
25 |
+
- **License:** CC BY-SA
|
26 |
+
- **Finetune Task:** Negation Scope Resolution
|
27 |
+
|
28 |
+
## Uses
|
29 |
+
|
30 |
+
See [LegalNegBERT](https://github.com/RamonaChristen/Multilingual_Negation_Scope_Resolution_on_Legal_Data/blob/main/LegalNegBERT) for details on the training process and how to use this model.
|
31 |
+
|
32 |
+
### Recommendations
|
33 |
+
|
34 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
|
35 |
+
|
36 |
+
|
37 |
+
### Training Data
|
38 |
+
|
39 |
+
This model was pretrained on the [Multi Legal Neg Dataset](https://huggingface.co/datasets/rcds/MultiLegalNeg)
|
40 |
+
|
41 |
+
## Evaluation
|
42 |
+
|
43 |
+
We evaluate neg-xlm-roberta-base on the test sets in the [Multi Legal Neg Dataset](https://huggingface.co/datasets/rcds/MultiLegalNeg).
|
44 |
+
| \_Test Dataset | F1-score |
|
45 |
+
| :------------------------- | :-------- |
|
46 |
+
| fr | 92.49 |
|
47 |
+
| it | 88.81 |
|
48 |
+
| de (DE) | 95.66 |
|
49 |
+
| de (CH) | 87.82 |
|
50 |
+
| SFU Review | 88.53 |
|
51 |
+
| ConanDoyle-neg | 90.47 |
|
52 |
+
| BioScope | 95.59 |
|
53 |
+
| Dalloux | 93.99 |
|
54 |
+
|
55 |
+
```
|
56 |
+
#### Software
|
57 |
+
|
58 |
+
pytorch, transformers.
|
59 |
+
|
60 |
+
## Citation
|
61 |
+
|
62 |
+
```
|
63 |
+
TBD
|
64 |
+
```
|