rcds
/

Token Classification
Transformers
PyTorch
xlm-roberta
legal
Inference Endpoints
ramonachristen commited on
Commit
381d030
1 Parent(s): 1a0a541

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - rcds/MultiLegalNeg
4
+ language:
5
+ - de
6
+ - fr
7
+ - it
8
+ - en
9
+ tags:
10
+ - legal
11
+ ---
12
+ # Model Card for joelito/legal-swiss-longformer-base
13
+
14
+ This model is based on [XLM-R-Base](https://huggingface.co/xlm-roberta-base).
15
+ It was pretrained on negation scope resolution using [NegBERT](https://github.com/adityak6798/Transformers-For-Negation-and-Speculation/blob/master/Transformers_for_Negation_and_Speculation.ipynb) ([Khandelwal and Sawant 2020](https://arxiv.org/abs/1911.04211))
16
+ For training we used the [Multi Legal Neg Dataset](https://huggingface.co/datasets/rcds/MultiLegalNeg), a multilingual dataset of legal data annotated for negation cues and scopes, ConanDoyle-neg ([
17
+ Morante and Blanco. 2012](https://aclanthology.org/S12-1035/)), SFU Review ([Konstantinova et al. 2012](http://www.lrec-conf.org/proceedings/lrec2012/pdf/533_Paper.pdf)), BioScope ([Szarvas et al. 2008](https://aclanthology.org/W08-0606/)) and Dalloux ([Dalloux et al. 2020](https://clementdalloux.fr/?page_id=28)).
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ - **Model type:** Transformer-based language model (XLM-R-base)
24
+ - **Languages:** de, fr, it, en
25
+ - **License:** CC BY-SA
26
+ - **Finetune Task:** Negation Scope Resolution
27
+
28
+ ## Uses
29
+
30
+ See [LegalNegBERT](https://github.com/RamonaChristen/Multilingual_Negation_Scope_Resolution_on_Legal_Data/blob/main/LegalNegBERT) for details on the training process and how to use this model.
31
+
32
+ ### Recommendations
33
+
34
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
35
+
36
+
37
+ ### Training Data
38
+
39
+ This model was pretrained on the [Multi Legal Neg Dataset](https://huggingface.co/datasets/rcds/MultiLegalNeg)
40
+
41
+ ## Evaluation
42
+
43
+ We evaluate neg-xlm-roberta-base on the test sets in the [Multi Legal Neg Dataset](https://huggingface.co/datasets/rcds/MultiLegalNeg).
44
+ | \_Test Dataset | F1-score |
45
+ | :------------------------- | :-------- |
46
+ | fr | 92.49 |
47
+ | it | 88.81 |
48
+ | de (DE) | 95.66 |
49
+ | de (CH) | 87.82 |
50
+ | SFU Review | 88.53 |
51
+ | ConanDoyle-neg | 90.47 |
52
+ | BioScope | 95.59 |
53
+ | Dalloux | 93.99 |
54
+
55
+ ```
56
+ #### Software
57
+
58
+ pytorch, transformers.
59
+
60
+ ## Citation
61
+
62
+ ```
63
+ TBD
64
+ ```