File size: 2,873 Bytes
5a68661
 
 
 
 
c1bb504
 
e937a8f
 
 
 
b87f40f
e937a8f
465ab0c
 
 
 
 
 
e937a8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
465ab0c
 
 
e937a8f
 
465ab0c
 
 
 
 
 
 
 
 
 
 
e937a8f
465ab0c
e937a8f
465ab0c
e937a8f
465ab0c
e937a8f
 
 
 
 
 
 
 
 
 
 
465ab0c
e937a8f
465ab0c
 
 
 
 
 
e937a8f
 
 
 
 
 
 
 
 
 
 
 
 
465ab0c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
datasets:
- raalst/squad_v2_dutch
language:
- nl
---

The used dataset raalst/squad_v2_dutch was kindly provided by Henryk Borzymowski.
It is a translated version of SQuAD V2. I converted it from json to jsonl format.
it contains train and validation splits, no test split. 
I declared 20% of Train to be used as Testset in my finetuning run.
That testset is what the evaluation is based on.

when using raalst/squad_v2_dutch, be sure to clean up quotes and double quotes in the contexts

The pretrained model was pdelobelle/robbert-v2-dutch-base, a dutch RoBERTa model  

results obtained in training are :

    metric = load("evaluate-metric/squad_v2" if squad_v2 else "evaluate-metric/squad")
    
    {'exact': 61.75389109958193,
     'f1': 66.89717170237417,
     'total': 19853,
     'HasAns_exact': 48.967182330322814,
     'HasAns_f1': 58.09796564493008,
     'HasAns_total': 11183,
     'NoAns_exact': 78.24682814302192,
     'NoAns_f1': 78.24682814302192,
     'NoAns_total': 8670,
     'best_exact': 61.75389109958193,
     'best_exact_thresh': 0.0,
     'best_f1': 66.89717170237276,
     'best_f1_thresh': 0.0}

This seems mediocre to me.

settings (until I figured out how to report them properly):

    DatasetDict({
      train: Dataset({
        features: ['id', 'title', 'context', 'question', 'answers'],
        num_rows: 79412
    })
    test: Dataset({
        features: ['id', 'title', 'context', 'question', 'answers'],
        num_rows: 19853
    })
    validation: Dataset({
        features: ['id', 'title', 'context', 'question', 'answers'],
        num_rows: 9669
    })
    })

    tokenizer = AutoTokenizer.from_pretrained("pdelobelle/robbert-v2-dutch-base")

    from transformers import AutoModelForQuestionAnswering, TrainingArguments, Trainer

    model = AutoModelForQuestionAnswering.from_pretrained("pdelobelle/robbert-v2-dutch-base")
    training_args = TrainingArguments(
      output_dir="./qa_model",
      evaluation_strategy="epoch",
      learning_rate=2e-5,
      per_device_train_batch_size=16,
      per_device_eval_batch_size=16,
      num_train_epochs=3,
      weight_decay=0.01,
      push_to_hub=False,
    )

    trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_squad["train"],
    eval_dataset=tokenized_squad["validation"],
    tokenizer=tokenizer,
    data_collator=data_collator,
    )

    trainer.train()
    
    [15198/15198 2:57:03, Epoch 3/3]
    Epoch 	Training Loss 	Validation Loss
    1 	1.380700 	1.177431
    2 	1.093000 	1.052601
    3 	0.849700 	1.143632

    TrainOutput(global_step=15198, training_loss=1.1917077029499668, metrics={'train_runtime': 10623.9565, 
    'train_samples_per_second': 22.886, 'train_steps_per_second': 1.431, 'total_flos': 4.764955396486349e+16, 
    'train_loss': 1.1917077029499668, 'epoch': 3.0})

Trained on Ubuntu with 1080Ti