File size: 2,062 Bytes
5171154
2ddcbc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5171154
 
2ddcbc2
 
5171154
2ddcbc2
5171154
2ddcbc2
 
 
 
5171154
2ddcbc2
5171154
2ddcbc2
5171154
2ddcbc2
5171154
2ddcbc2
5171154
2ddcbc2
5171154
2ddcbc2
5171154
2ddcbc2
5171154
2ddcbc2
5171154
2ddcbc2
 
 
 
 
 
 
 
 
 
 
5171154
2ddcbc2
5171154
2ddcbc2
 
 
 
 
 
 
5171154
 
 
 
2ddcbc2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- food101
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-in21k-finetuned-lora-food101
  results:
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: food101
      type: food101
      config: default
      split: train[:5000]
      args: default
    metrics:
    - type: accuracy
      value: 0.96
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-patch16-224-in21k-finetuned-lora-food101

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1448
- Accuracy: 0.96

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 9    | 0.5069          | 0.896    |
| 2.1627        | 2.0   | 18   | 0.1891          | 0.946    |
| 0.3451        | 3.0   | 27   | 0.1448          | 0.96     |
| 0.2116        | 4.0   | 36   | 0.1509          | 0.958    |
| 0.1711        | 5.0   | 45   | 0.1498          | 0.958    |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2