File size: 9,696 Bytes
67d94bc
 
 
cb21ec5
67d94bc
 
 
 
 
 
 
 
 
 
 
cb977b0
67d94bc
 
e105295
cb977b0
 
67d94bc
 
 
 
 
 
 
 
 
 
 
 
 
 
389d87b
 
a0c496c
 
e3ebfec
a0c496c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67d94bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389d87b
 
 
 
 
 
a0c496c
389d87b
 
67d94bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389d87b
67d94bc
389d87b
 
 
 
67d94bc
 
 
 
 
389d87b
 
67d94bc
b3fa19e
67d94bc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
library_name: pytorch
license: apache-2.0
pipeline_tag: keypoint-detection
tags:
- quantized
- android

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/posenet_mobilenet_quantized/web-assets/model_demo.png)

# Posenet-Mobilenet-Quantized: Optimized for Mobile Deployment
## Quantized human pose estimator


Posenet performs pose estimation on human images.

This model is an implementation of Posenet-Mobilenet-Quantized found [here](https://github.com/rwightman/posenet-pytorch).


This repository provides scripts to run Posenet-Mobilenet-Quantized on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/posenet_mobilenet_quantized).


### Model Details

- **Model Type:** Pose estimation
- **Model Stats:**
  - Model checkpoint: mobilenet_v1_101
  - Input resolution: 513x257
  - Number of parameters: 3.31M
  - Model size: 3.47 MB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Posenet-Mobilenet-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.559 ms | 0 - 2 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.633 ms | 0 - 5 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.so](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.so) |
| Posenet-Mobilenet-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.393 ms | 0 - 49 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.442 ms | 0 - 20 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.so](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.so) |
| Posenet-Mobilenet-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.347 ms | 0 - 27 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.392 ms | 0 - 17 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 2.191 ms | 0 - 27 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 2.87 ms | 0 - 8 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 13.626 ms | 0 - 8 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.557 ms | 0 - 1 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.556 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.557 ms | 0 - 1 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.563 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 0.556 ms | 0 - 96 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | SA8775 (Proxy) | SA8775P Proxy | QNN | 0.555 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.56 ms | 0 - 1 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.554 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | SA8295P ADP | SA8295P | TFLITE | 1.212 ms | 0 - 25 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | SA8295P ADP | SA8295P | QNN | 1.275 ms | 0 - 6 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 0.722 ms | 0 - 49 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 0.804 ms | 0 - 19 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.714 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |




## Installation

This model can be installed as a Python package via pip.

```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.posenet_mobilenet_quantized.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.posenet_mobilenet_quantized.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.posenet_mobilenet_quantized.export
```
```
Profiling Results
------------------------------------------------------------
Posenet-Mobilenet-Quantized
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 0.6                    
Estimated peak memory usage (MB): [0, 2]                 
Total # Ops                     : 48                     
Compute Unit(s)                 : NPU (48 ops)           
```




## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.posenet_mobilenet_quantized.demo --on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.posenet_mobilenet_quantized.demo -- --on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Posenet-Mobilenet-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/posenet_mobilenet_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Posenet-Mobilenet-Quantized can be found [here](https://github.com/rwightman/posenet-pytorch/blob/master/LICENSE.txt).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model](https://arxiv.org/abs/1803.08225)
* [Source Model Implementation](https://github.com/rwightman/posenet-pytorch)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).