File size: 12,943 Bytes
a372917
 
 
 
 
 
 
 
 
 
 
dbad223
a372917
 
 
 
c3a1ccc
a372917
 
c3a1ccc
 
 
a372917
 
 
 
 
 
 
 
 
 
20d46da
a372917
 
 
 
 
 
ce7e4cd
 
 
 
 
 
 
 
 
 
 
 
 
 
a372917
8816dc8
 
 
a372917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbad223
a372917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce7e4cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a372917
8816dc8
 
a372917
 
8816dc8
a372917
 
 
dbad223
a372917
dbad223
a372917
 
 
 
 
 
 
dbad223
a372917
dbad223
 
 
 
a372917
 
 
 
 
dbad223
a372917
 
 
 
dbad223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a372917
 
 
 
 
 
 
 
 
 
dbad223
 
 
 
a372917
dbad223
a372917
dbad223
a372917
dbad223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a372917
 
 
 
 
 
e980a7c
a372917
 
 
8816dc8
a372917
 
 
 
 
 
 
 
 
dbad223
a372917
dbad223
a372917
 
 
 
 
 
ce7e4cd
a372917
ce7e4cd
 
 
 
a372917
 
 
 
 
ce7e4cd
 
a372917
69e3747
a372917
 
 
dbad223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
---
library_name: pytorch
license: apache-2.0
pipeline_tag: unconditional-image-generation
tags:
- generative_ai
- quantized
- android

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/controlnet_quantized/web-assets/model_demo.png)

# ControlNet: Optimized for Mobile Deployment
## Generating visual arts from text prompt and input guiding image


On-device, high-resolution image synthesis from text and image prompts. ControlNet guides Stable-diffusion with provided input image to generate accurate images from given input prompt.

This model is an implementation of Posenet-Mobilenet found [here](https://github.com/lllyasviel/ControlNet). 


This repository provides scripts to run ControlNet on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/controlnet_quantized).


### Model Details

- **Model Type:** Image generation
- **Model Stats:**
  - Input: Text prompt and input image as a reference
  - Conditioning Input: Canny-Edge
  - Text Encoder Number of parameters: 340M
  - UNet Number of parameters: 865M
  - VAE Decoder Number of parameters: 83M
  - ControlNet Number of parameters: 361M
  - Model size: 1.4GB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| TextEncoder_Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 11.394 ms | 0 - 74 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/TextEncoder_Quantized.bin) |
| TextEncoder_Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 8.08 ms | 0 - 137 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/TextEncoder_Quantized.bin) |
| TextEncoder_Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 10.982 ms | 0 - 1 MB | UINT16 | NPU | Use Export Script |
| UNet_Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 262.52 ms | 11 - 17 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/UNet_Quantized.bin) |
| UNet_Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 192.789 ms | 3 - 1247 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/UNet_Quantized.bin) |
| UNet_Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 260.158 ms | 14 - 15 MB | UINT16 | NPU | Use Export Script |
| VAEDecoder_Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 390.243 ms | 0 - 36 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/VAEDecoder_Quantized.bin) |
| VAEDecoder_Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 294.404 ms | 0 - 88 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/VAEDecoder_Quantized.bin) |
| VAEDecoder_Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 379.548 ms | 0 - 1 MB | UINT16 | NPU | Use Export Script |
| ControlNet_Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 100.33 ms | 2 - 68 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_Quantized.bin) |
| ControlNet_Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 76.94 ms | 0 - 533 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_Quantized.bin) |
| ControlNet_Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 103.52 ms | 2 - 3 MB | UINT16 | NPU | Use Export Script |




## Installation

This model can be installed as a Python package via pip.

```bash
pip install "qai-hub-models[controlnet_quantized]"
```



## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo on-device

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.controlnet_quantized.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.controlnet_quantized.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.controlnet_quantized.export
```
```
Profiling Results
------------------------------------------------------------
TextEncoder_Quantized
Device                          : Samsung Galaxy S23 (13)
Runtime                         : QNN                    
Estimated inference time (ms)   : 11.4                   
Estimated peak memory usage (MB): [0, 74]                
Total # Ops                     : 570                    
Compute Unit(s)                 : NPU (570 ops)          

------------------------------------------------------------
UNet_Quantized
Device                          : Samsung Galaxy S23 (13)
Runtime                         : QNN                    
Estimated inference time (ms)   : 262.5                  
Estimated peak memory usage (MB): [11, 17]               
Total # Ops                     : 5434                   
Compute Unit(s)                 : NPU (5434 ops)         

------------------------------------------------------------
VAEDecoder_Quantized
Device                          : Samsung Galaxy S23 (13)
Runtime                         : QNN                    
Estimated inference time (ms)   : 390.2                  
Estimated peak memory usage (MB): [0, 36]                
Total # Ops                     : 409                    
Compute Unit(s)                 : NPU (409 ops)          

------------------------------------------------------------
ControlNet_Quantized
Device                          : Samsung Galaxy S23 (13)
Runtime                         : QNN                    
Estimated inference time (ms)   : 100.3                  
Estimated peak memory usage (MB): [2, 68]                
Total # Ops                     : 2406                   
Compute Unit(s)                 : NPU (2406 ops)         
```


## How does this work?

This [export script](https://aihub.qualcomm.com/models/controlnet_quantized/qai_hub_models/models/ControlNet/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Upload compiled model**

Upload compiled models from `qai_hub_models.models.controlnet_quantized` on hub.
```python
import torch

import qai_hub as hub
from qai_hub_models.models.controlnet_quantized import Model

# Load the model
model = Model.from_precompiled()

model_textencoder_quantized = hub.upload_model(model.text_encoder.get_target_model_path())
model_unet_quantized = hub.upload_model(model.unet.get_target_model_path())
model_vaedecoder_quantized = hub.upload_model(model.vae_decoder.get_target_model_path())
model_controlnet_quantized = hub.upload_model(model.controlnet.get_target_model_path())
```


Step 2: **Performance profiling on cloud-hosted device**

After uploading compiled models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python

# Device
device = hub.Device("Samsung Galaxy S23")
profile_job_textencoder_quantized = hub.submit_profile_job(
    model=model_textencoder_quantized,
    device=device,
)
profile_job_unet_quantized = hub.submit_profile_job(
    model=model_unet_quantized,
    device=device,
)
profile_job_vaedecoder_quantized = hub.submit_profile_job(
    model=model_vaedecoder_quantized,
    device=device,
)
profile_job_controlnet_quantized = hub.submit_profile_job(
    model=model_controlnet_quantized,
    device=device,
)

```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python

input_data_textencoder_quantized = model.text_encoder.sample_inputs()
inference_job_textencoder_quantized = hub.submit_inference_job(
    model=model_textencoder_quantized,
    device=device,
    inputs=input_data_textencoder_quantized,
)
on_device_output_textencoder_quantized = inference_job_textencoder_quantized.download_output_data()

input_data_unet_quantized = model.unet.sample_inputs()
inference_job_unet_quantized = hub.submit_inference_job(
    model=model_unet_quantized,
    device=device,
    inputs=input_data_unet_quantized,
)
on_device_output_unet_quantized = inference_job_unet_quantized.download_output_data()

input_data_vaedecoder_quantized = model.vae_decoder.sample_inputs()
inference_job_vaedecoder_quantized = hub.submit_inference_job(
    model=model_vaedecoder_quantized,
    device=device,
    inputs=input_data_vaedecoder_quantized,
)
on_device_output_vaedecoder_quantized = inference_job_vaedecoder_quantized.download_output_data()

input_data_controlnet_quantized = model.controlnet.sample_inputs()
inference_job_controlnet_quantized = hub.submit_inference_job(
    model=model_controlnet_quantized,
    device=device,
    inputs=input_data_controlnet_quantized,
)
on_device_output_controlnet_quantized = inference_job_controlnet_quantized.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).




## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN ( `.so` / `.bin` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library or `.bin` context binary in an Android application.


## View on Qualcomm® AI Hub
Get more details on ControlNet's performance across various devices [here](https://aihub.qualcomm.com/models/controlnet_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of ControlNet can be found [here](https://github.com/lllyasviel/ControlNet/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/lllyasviel/ControlNet/blob/main/LICENSE)



## References
* [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543)
* [Source Model Implementation](https://github.com/lllyasviel/ControlNet)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).


## Usage and Limitations

Model may not be used for or in connection with any of the following applications:

- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation