|
from typing import List, Tuple |
|
from PIL import Image |
|
import math |
|
|
|
|
|
def generate_grid_configurations(size: int) -> List[Tuple[int, int]]: |
|
grid_configs = [ |
|
(2 * size, 2 * size), |
|
(1 * size, 2 * size), |
|
(1 * size, 3 * size), |
|
(1 * size, 4 * size), |
|
(4 * size, 1 * size), |
|
(3 * size, 1 * size), |
|
(2 * size, 1 * size), |
|
] |
|
return grid_configs |
|
|
|
|
|
def select_best_resolution(original_size, possible_resolutions): |
|
""" |
|
Selects the best resolution from a list of possible resolutions based on the original size. |
|
|
|
Args: |
|
original_size (tuple): The original size of the image in the format (width, height). |
|
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. |
|
|
|
Returns: |
|
tuple: The best fit resolution in the format (width, height). |
|
""" |
|
original_width, original_height = original_size |
|
best_fit = None |
|
max_effective_resolution = 0 |
|
min_wasted_resolution = float("inf") |
|
|
|
for width, height in possible_resolutions: |
|
scale = min(width / original_width, height / original_height) |
|
downscaled_width, downscaled_height = ( |
|
int(original_width * scale), |
|
int(original_height * scale), |
|
) |
|
effective_resolution = min( |
|
downscaled_width * downscaled_height, original_width * original_height |
|
) |
|
wasted_resolution = (width * height) - effective_resolution |
|
|
|
if effective_resolution > max_effective_resolution or ( |
|
effective_resolution == max_effective_resolution |
|
and wasted_resolution < min_wasted_resolution |
|
): |
|
max_effective_resolution = effective_resolution |
|
min_wasted_resolution = wasted_resolution |
|
best_fit = (width, height) |
|
|
|
return best_fit |
|
|
|
|
|
def resize_and_pad_image(image, target_resolution): |
|
""" |
|
Resize and pad an image to a target resolution while maintaining aspect ratio. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image. |
|
target_resolution (tuple): The target resolution (width, height) of the image. |
|
|
|
Returns: |
|
PIL.Image.Image: The resized and padded image. |
|
""" |
|
original_width, original_height = image.size |
|
target_width, target_height = target_resolution |
|
|
|
scale_w = target_width / original_width |
|
scale_h = target_height / original_height |
|
|
|
if scale_w < scale_h: |
|
new_width = target_width |
|
new_height = min(math.ceil(original_height * scale_w), target_height) |
|
else: |
|
new_height = target_height |
|
new_width = min(math.ceil(original_width * scale_h), target_width) |
|
|
|
|
|
resized_image = image.resize((new_width, new_height)) |
|
|
|
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0)) |
|
paste_x = (target_width - new_width) // 2 |
|
paste_y = (target_height - new_height) // 2 |
|
new_image.paste(resized_image, (paste_x, paste_y)) |
|
|
|
return new_image |
|
|
|
|
|
def divide_to_patches(image, patch_size): |
|
""" |
|
Divides an image into patches of a specified size. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image. |
|
patch_size (int): The size of each patch. |
|
|
|
Returns: |
|
list: A list of PIL.Image.Image objects representing the patches. |
|
""" |
|
patches = [] |
|
width, height = image.size |
|
for i in range(0, height, patch_size): |
|
for j in range(0, width, patch_size): |
|
box = (j, i, j + patch_size, i + patch_size) |
|
patch = image.crop(box) |
|
patches.append(patch) |
|
|
|
return patches |
|
|
|
|
|
def slice_anyres_image(image, patch_size=378): |
|
grid_pinpoints = generate_grid_configurations(patch_size) |
|
|
|
best_resolution = select_best_resolution(image.size, grid_pinpoints) |
|
image_padded = resize_and_pad_image(image, best_resolution) |
|
|
|
patches = divide_to_patches(image_padded, patch_size) |
|
|
|
size = {"shortest_edge": patch_size} |
|
image_original_resize = image.resize((size["shortest_edge"], size["shortest_edge"])) |
|
|
|
image_patches = [image_original_resize] + patches |
|
|
|
return image_patches |
|
|