from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from transformers import AutoConfig, AutoModelForCausalLM, \ LlamaConfig from transformers.modeling_outputs import CausalLMOutputWithPast from abc import ABC, abstractmethod import os from .modeling_llama_iaa import LlamaModel, LlamaForCausalLM from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig from functools import partial from transformers.configuration_utils import PretrainedConfig import re from PIL import Image CONTROLLER_HEART_BEAT_EXPIRATION = 30 WORKER_HEART_BEAT_INTERVAL = 15 LOGDIR = "." # Model Constants IGNORE_INDEX = -100 IMAGE_TOKEN_INDEX = -200 DEFAULT_IMAGE_TOKEN = "" DEFAULT_IMAGE_PATCH_TOKEN = "" DEFAULT_IM_START_TOKEN = "" DEFAULT_IM_END_TOKEN = "" import math from einops import rearrange class CLIPVisionTower(nn.Module): def __init__(self, vision_tower, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') if not delay_load: self.load_model() else: self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) def load_model(self): self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) self.vision_tower.requires_grad_(False) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features[:, 1:] elif self.select_feature == 'cls_patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features @torch.no_grad() def forward(self, images): if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_tower.dtype @property def device(self): return self.vision_tower.device @property def config(self): if self.is_loaded: return self.vision_tower.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 def build_vision_tower(vision_tower_cfg, **kwargs): vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None)) is_absolute_path_exists = os.path.exists(vision_tower) if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion"): return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) raise ValueError(f'Unknown vision tower: {vision_tower}') def build_vision_projector(config, delay_load=False, **kwargs): projector_type = getattr(config, 'mm_projector_type', 'linear') if projector_type == 'linear': return nn.Linear(config.mm_hidden_size, config.hidden_size) mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) if mlp_gelu_match: mlp_depth = int(mlp_gelu_match.group(1)) modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] for _ in range(1, mlp_depth): modules.append(nn.GELU()) modules.append(nn.Linear(config.hidden_size, config.hidden_size)) return nn.Sequential(*modules) raise ValueError(f'Unknown projector type: {projector_type}') class IAAMetaModel: def __init__(self, config): super(IAAMetaModel, self).__init__(config) if hasattr(config, "mm_vision_tower"): self.vision_tower = build_vision_tower(config, delay_load=True) self.mm_projector = build_vision_projector(config) self.mm_projector_G = build_vision_projector(config) def get_vision_tower(self): vision_tower = getattr(self, 'vision_tower', None) if type(vision_tower) is list: vision_tower = vision_tower[0] return vision_tower class IAAMetaForCausalLM(ABC): @abstractmethod def get_model(self): pass def get_vision_tower(self): return self.get_model().get_vision_tower() def encode_images(self, images, task_type): image_features = self.get_model().get_vision_tower()(images) if task_type == "MM": image_features = self.get_model().mm_projector(image_features) else: image_features = self.get_model().mm_projector_G(image_features) return image_features def prepare_inputs_labels_for_multimodal( self, input_ids, attention_mask, past_key_values, labels, images, task_type, ): vision_tower = self.get_vision_tower() if vision_tower is None or images is None or input_ids.shape[1] == 1: if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: attention_mask = torch.ones((attention_mask.shape[0], past_key_values[0][-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) return input_ids, attention_mask, past_key_values, None, labels if type(images) is list or images.ndim == 5: image_features = [] for image in images: if image.ndim == 3: image_features.append(self.encode_images(image.unsqueeze(0)).squeeze(0)) elif image.ndim == 4: pass else: image_features = self.encode_images(images, task_type) if task_type == "MM": embed_tokens_func = self.get_model().embed_tokens_condition elif task_type == "G": embed_tokens_func = self.get_model().embed_tokens_condition_grounding else: embed_tokens_func = self.get_model().embed_tokens new_input_embeds = [] new_labels = [] if labels is not None else None cur_image_idx = 0 for batch_idx, cur_input_ids in enumerate(input_ids): if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: # multimodal LLM, but the current sample is not multimodal # FIXME: this is a hacky fix, for deepspeed zero3 to work half_len = cur_input_ids.shape[0] // 2 cur_image_features = image_features[cur_image_idx] cur_input_embeds_1 = embed_tokens_func(cur_input_ids[:half_len]) cur_input_embeds_2 = embed_tokens_func(cur_input_ids[half_len:]) cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0) new_input_embeds.append(cur_input_embeds) if labels is not None: new_labels.append(labels[batch_idx]) cur_image_idx += 1 continue image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] cur_new_input_embeds = [] if labels is not None: cur_labels = labels[batch_idx] cur_new_labels = [] assert cur_labels.shape == cur_input_ids.shape while image_token_indices.numel() > 0: cur_image_features = image_features[cur_image_idx] image_token_start = image_token_indices[0] if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): cur_new_input_embeds.append(embed_tokens_func(cur_input_ids[:image_token_start-1]).detach()) cur_new_input_embeds.append(embed_tokens_func(cur_input_ids[image_token_start-1:image_token_start])) cur_new_input_embeds.append(cur_image_features) cur_new_input_embeds.append(embed_tokens_func(cur_input_ids[image_token_start+1:image_token_start+2])) if labels is not None: cur_new_labels.append(cur_labels[:image_token_start]) cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) cur_new_labels.append(cur_labels[image_token_start:image_token_start+1]) cur_labels = cur_labels[image_token_start+2:] else: cur_new_input_embeds.append(embed_tokens_func(cur_input_ids[:image_token_start])) cur_new_input_embeds.append(cur_image_features) if labels is not None: cur_new_labels.append(cur_labels[:image_token_start]) cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) cur_labels = cur_labels[image_token_start+1:] cur_image_idx += 1 if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): cur_input_ids = cur_input_ids[image_token_start+2:] else: cur_input_ids = cur_input_ids[image_token_start+1:] image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] if cur_input_ids.numel() > 0: if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): cur_new_input_embeds.append(embed_tokens_func(cur_input_ids).detach()) else: cur_new_input_embeds.append(embed_tokens_func(cur_input_ids)) if labels is not None: cur_new_labels.append(cur_labels) cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) new_input_embeds.append(cur_new_input_embeds) if labels is not None: cur_new_labels = torch.cat(cur_new_labels, dim=0) new_labels.append(cur_new_labels) if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): max_len = max(x.shape[0] for x in new_input_embeds) new_input_embeds_align = [] for cur_new_embed in new_input_embeds: cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) new_input_embeds_align.append(cur_new_embed) new_input_embeds = torch.stack(new_input_embeds_align, dim=0) if labels is not None: new_labels_align = [] _new_labels = new_labels for cur_new_label in new_labels: cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) new_labels_align.append(cur_new_label) new_labels = torch.stack(new_labels_align, dim=0) if attention_mask is not None: new_attention_mask = [] for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) new_attention_mask.append(cur_new_attention_mask) attention_mask = torch.stack(new_attention_mask, dim=0) assert attention_mask.shape == new_labels.shape else: new_input_embeds = torch.stack(new_input_embeds, dim=0) if labels is not None: new_labels = torch.stack(new_labels, dim=0) if attention_mask is not None: new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) assert attention_mask.shape == new_input_embeds.shape[:2] return None, attention_mask, past_key_values, new_input_embeds, new_labels class IAAConfig(LlamaConfig): model_type = "IAA" class IAALlamaModel(IAAMetaModel, LlamaModel): config_class = IAAConfig def __init__(self, config: LlamaConfig): super(IAALlamaModel, self).__init__(config) class IAALlamaForCausalLM(LlamaForCausalLM, IAAMetaForCausalLM): config_class = IAAConfig def __init__(self, config): super(LlamaForCausalLM, self).__init__(config) config._attn_implementation = "flash_attention_2" self.model = IAALlamaModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head_condtion = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head_condtion_grounding = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, task_type = None, ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images, task_type) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict = return_dict, task_type=task_type, ) hidden_states = outputs[0] if task_type == "MM": logits = self.lm_head_condtion(hidden_states) elif task_type == "G": logits = self.lm_head_condtion_grounding(hidden_states) else: logits = self.lm_head(hidden_states) loss = None assert labels is None if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): # print(attention_mask) if past_key_values: input_ids = input_ids[:, -1:] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "images": kwargs.get("images", None), "task_type": kwargs.get("task_type", "textonly"), } ) return model_inputs def build_conversation_input_ids( self, tokenizer: "PreTrainedTokenizer", query: str, image = None, image_processor=None, ): if image: input_msg = [ { "role": "system", "content": "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions." }, { "role": "user", "content": "<|reserved_special_token_44|>"+ '\n' + query } ] else: input_msg = [ { "role": "system", "content": "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions." }, { "role": "user", "content": query } ] input_ids = tokenizer.apply_chat_template( input_msg, add_generation_prompt=True, padding="longest", return_tensors="pt", ) input_id_list = input_ids[0].tolist() if image: input_id_list[input_id_list.index(128049)]=-200 image_tensor = self.process_images(image,image_processor).unsqueeze(0) else: image_tensor = None input_ids = torch.tensor(input_id_list, dtype=input_ids.dtype,device=input_ids.device) input_ids = input_ids.unsqueeze(0) return { 'input_ids': input_ids, 'image': image_tensor, } def process_images(self, image, image_processor): def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] return image