File size: 20,681 Bytes
71970fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn

from torch.nn import CrossEntropyLoss

from transformers import AutoConfig, AutoModelForCausalLM, \
                         LlamaConfig

from transformers.modeling_outputs import CausalLMOutputWithPast
from abc import ABC, abstractmethod
import os
from .modeling_llama_iaa import LlamaModel, LlamaForCausalLM
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
from functools import partial
from transformers.configuration_utils import PretrainedConfig
import re
from PIL import Image

CONTROLLER_HEART_BEAT_EXPIRATION = 30
WORKER_HEART_BEAT_INTERVAL = 15

LOGDIR = "."

# Model Constants
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"


import math
from einops import rearrange



class CLIPVisionTower(nn.Module):
    def __init__(self, vision_tower, args, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.vision_tower_name = vision_tower
        self.select_layer = args.mm_vision_select_layer
        self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')

        if not delay_load:
            self.load_model()
        else:
            self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)

    def load_model(self):
        self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
        self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
        self.vision_tower.requires_grad_(False)

        self.is_loaded = True

    def feature_select(self, image_forward_outs):
        image_features = image_forward_outs.hidden_states[self.select_layer]
        if self.select_feature == 'patch':
            image_features = image_features[:, 1:]
        elif self.select_feature == 'cls_patch':
            image_features = image_features
        else:
            raise ValueError(f'Unexpected select feature: {self.select_feature}')
        return image_features

    @torch.no_grad()
    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
                image_feature = self.feature_select(image_forward_out).to(image.dtype)
                image_features.append(image_feature)
        else:
            image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
            image_features = self.feature_select(image_forward_outs).to(images.dtype)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_tower.dtype

    @property
    def device(self):
        return self.vision_tower.device

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2


def build_vision_tower(vision_tower_cfg, **kwargs):
    vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
    is_absolute_path_exists = os.path.exists(vision_tower)
    
    if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion"):
        return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)

    raise ValueError(f'Unknown vision tower: {vision_tower}')

def build_vision_projector(config, delay_load=False, **kwargs):
    projector_type = getattr(config, 'mm_projector_type', 'linear')

    if projector_type == 'linear':
        return nn.Linear(config.mm_hidden_size, config.hidden_size)

    mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
    if mlp_gelu_match:
        mlp_depth = int(mlp_gelu_match.group(1))
        modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
        for _ in range(1, mlp_depth):
            modules.append(nn.GELU())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
        return nn.Sequential(*modules)

    raise ValueError(f'Unknown projector type: {projector_type}')


class IAAMetaModel:

    def __init__(self, config):
        super(IAAMetaModel, self).__init__(config)
        if hasattr(config, "mm_vision_tower"):
            self.vision_tower = build_vision_tower(config, delay_load=True)
            self.mm_projector = build_vision_projector(config)
            self.mm_projector_G = build_vision_projector(config)
            

    def get_vision_tower(self):
        vision_tower = getattr(self, 'vision_tower', None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower


class IAAMetaForCausalLM(ABC):

    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def encode_images(self, images, task_type):
        image_features = self.get_model().get_vision_tower()(images)

        if task_type == "MM":
            image_features = self.get_model().mm_projector(image_features)
        else:
            image_features = self.get_model().mm_projector_G(image_features)

        return image_features


    def prepare_inputs_labels_for_multimodal(
        self, input_ids, attention_mask, past_key_values, labels, images, task_type,
    ):
        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
                attention_mask = torch.ones((attention_mask.shape[0], past_key_values[0][-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
            return input_ids, attention_mask, past_key_values, None, labels

        if type(images) is list or images.ndim == 5:
            image_features = []
            for image in images:
                if image.ndim == 3:
                    image_features.append(self.encode_images(image.unsqueeze(0)).squeeze(0))
                elif image.ndim == 4:
                    pass
        else:
            image_features = self.encode_images(images, task_type)

        if task_type == "MM":
            embed_tokens_func = self.get_model().embed_tokens_condition
        elif task_type == "G":
            embed_tokens_func = self.get_model().embed_tokens_condition_grounding
        else:
            embed_tokens_func = self.get_model().embed_tokens


        new_input_embeds = []
        new_labels = [] if labels is not None else None
        cur_image_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
            if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
                # multimodal LLM, but the current sample is not multimodal
                # FIXME: this is a hacky fix, for deepspeed zero3 to work
                half_len = cur_input_ids.shape[0] // 2
                cur_image_features = image_features[cur_image_idx]
                cur_input_embeds_1 = embed_tokens_func(cur_input_ids[:half_len])
                cur_input_embeds_2 = embed_tokens_func(cur_input_ids[half_len:])
                cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0)
                new_input_embeds.append(cur_input_embeds)
                if labels is not None:
                    new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                continue
            image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
            cur_new_input_embeds = []
            if labels is not None:
                cur_labels = labels[batch_idx]
                cur_new_labels = []
                assert cur_labels.shape == cur_input_ids.shape
            while image_token_indices.numel() > 0:
                cur_image_features = image_features[cur_image_idx]
                image_token_start = image_token_indices[0]
                if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
                    cur_new_input_embeds.append(embed_tokens_func(cur_input_ids[:image_token_start-1]).detach())
                    cur_new_input_embeds.append(embed_tokens_func(cur_input_ids[image_token_start-1:image_token_start]))
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_input_embeds.append(embed_tokens_func(cur_input_ids[image_token_start+1:image_token_start+2]))
                    if labels is not None:
                        cur_new_labels.append(cur_labels[:image_token_start])
                        cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
                        cur_new_labels.append(cur_labels[image_token_start:image_token_start+1])
                        cur_labels = cur_labels[image_token_start+2:]
                else:
                    cur_new_input_embeds.append(embed_tokens_func(cur_input_ids[:image_token_start]))
                    cur_new_input_embeds.append(cur_image_features)
                    if labels is not None:
                        cur_new_labels.append(cur_labels[:image_token_start])
                        cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
                        cur_labels = cur_labels[image_token_start+1:]
                cur_image_idx += 1
                if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
                    cur_input_ids = cur_input_ids[image_token_start+2:]
                else:
                    cur_input_ids = cur_input_ids[image_token_start+1:]
                image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
            if cur_input_ids.numel() > 0:
                if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
                    cur_new_input_embeds.append(embed_tokens_func(cur_input_ids).detach())
                else:
                    cur_new_input_embeds.append(embed_tokens_func(cur_input_ids))
                if labels is not None:
                    cur_new_labels.append(cur_labels)
            cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
            cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
            new_input_embeds.append(cur_new_input_embeds)
            if labels is not None:
                cur_new_labels = torch.cat(cur_new_labels, dim=0)
                new_labels.append(cur_new_labels)

        if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
            max_len = max(x.shape[0] for x in new_input_embeds)

            new_input_embeds_align = []
            for cur_new_embed in new_input_embeds:
                cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
                new_input_embeds_align.append(cur_new_embed)
            new_input_embeds = torch.stack(new_input_embeds_align, dim=0)

            if labels is not None:
                new_labels_align = []
                _new_labels = new_labels
                for cur_new_label in new_labels:
                    cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
                    new_labels_align.append(cur_new_label)
                new_labels = torch.stack(new_labels_align, dim=0)

            if attention_mask is not None:
                new_attention_mask = []
                for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
                    new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
                    new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
                    cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
                    new_attention_mask.append(cur_new_attention_mask)
                attention_mask = torch.stack(new_attention_mask, dim=0)
                assert attention_mask.shape == new_labels.shape
        else:
            new_input_embeds = torch.stack(new_input_embeds, dim=0)
            if labels is not None:
                new_labels  = torch.stack(new_labels, dim=0)

            if attention_mask is not None:
                new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
                attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
                assert attention_mask.shape == new_input_embeds.shape[:2]

        return None, attention_mask, past_key_values, new_input_embeds, new_labels

class IAAConfig(LlamaConfig):
    model_type = "IAA"


class IAALlamaModel(IAAMetaModel, LlamaModel):
    config_class = IAAConfig

    def __init__(self, config: LlamaConfig):
        super(IAALlamaModel, self).__init__(config)


class IAALlamaForCausalLM(LlamaForCausalLM, IAAMetaForCausalLM):
    config_class = IAAConfig

    def __init__(self, config):
        super(LlamaForCausalLM, self).__init__(config)

        config._attn_implementation = "flash_attention_2"
        self.model = IAALlamaModel(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        self.lm_head_condtion = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        self.lm_head_condtion_grounding = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        
        self.post_init()

    def get_model(self):
        return self.model


    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
        task_type = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images, task_type)

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict = return_dict,
            task_type=task_type,
        )

        hidden_states = outputs[0]

        if task_type == "MM":
            logits = self.lm_head_condtion(hidden_states)
        elif task_type == "G":
            logits = self.lm_head_condtion_grounding(hidden_states)
        else:
            logits = self.lm_head(hidden_states)
        

        loss = None
        assert labels is None

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        
        # print(attention_mask)
        if past_key_values:
            input_ids = input_ids[:, -1:]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "images": kwargs.get("images", None),
                "task_type": kwargs.get("task_type", "textonly"),
            }
        )
        return model_inputs

    
    def build_conversation_input_ids(
            self,
            tokenizer: "PreTrainedTokenizer",
            query: str,
            image = None,
            image_processor=None,
        ):

        if image:
            input_msg = [
                {
                    "role": "system", 
                    "content": "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."
                },
                {
                    "role": "user", 
                    "content": "<|reserved_special_token_44|>"+ '\n' + query
                }
            ]
        else:
            input_msg = [
                {
                    "role": "system", 
                    "content": "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."
                },
                {
                    "role": "user", 
                    "content": query
                }
            ]


        input_ids = tokenizer.apply_chat_template(
            input_msg,
            add_generation_prompt=True,
            padding="longest",
            return_tensors="pt",
        )
        input_id_list = input_ids[0].tolist()

        if image:
            input_id_list[input_id_list.index(128049)]=-200
            image_tensor = self.process_images(image,image_processor).unsqueeze(0)
        else:
            image_tensor = None

        input_ids = torch.tensor(input_id_list, dtype=input_ids.dtype,device=input_ids.device)
        input_ids = input_ids.unsqueeze(0)
        
        
        return {
            'input_ids': input_ids,
            'image': image_tensor,
        }



    def process_images(self, image, image_processor):

        def expand2square(pil_img, background_color):
            width, height = pil_img.size
            if width == height:
                return pil_img
            elif width > height:
                result = Image.new(pil_img.mode, (width, width), background_color)
                result.paste(pil_img, (0, (width - height) // 2))
                return result
            else:
                result = Image.new(pil_img.mode, (height, height), background_color)
                result.paste(pil_img, ((height - width) // 2, 0))
                return result

        image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
        image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]

        return image