|
|
|
|
|
|
|
|
|
import copy |
|
import os |
|
from typing import Union |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES |
|
from transformers.utils import logging |
|
from transformers.models.auto import CONFIG_MAPPING |
|
|
|
|
|
class LlamaConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the LLaMA-7B. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`LlamaModel`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 11008): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer decoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
num_key_value_heads (`int`, *optional*): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to |
|
`num_attention_heads`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens, |
|
Llama 2 up to 4096, CodeLlama up to 16384. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
pad_token_id (`int`, *optional*): |
|
Padding token id. |
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
Beginning of stream token id. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
End of stream token id. |
|
pretraining_tp (`int`, *optional*, defaults to 1): |
|
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this |
|
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is |
|
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this |
|
issue](https://github.com/pytorch/pytorch/issues/76232). |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether to tie weight embeddings |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`Dict`, *optional*): |
|
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling |
|
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is |
|
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update |
|
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how |
|
these scaling strategies behave: |
|
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an |
|
experimental feature, subject to breaking API changes in future versions. |
|
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): |
|
Whether to use a bias in the query, key, value and output projection layers during self-attention. |
|
|
|
|
|
```python |
|
>>> from transformers import LlamaModel, LlamaConfig |
|
|
|
>>> # Initializing a LLaMA llama-7b style configuration |
|
>>> configuration = LlamaConfig() |
|
|
|
>>> # Initializing a model from the llama-7b style configuration |
|
>>> model = LlamaModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "llama" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=4096, |
|
intermediate_size=11008, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=None, |
|
hidden_act="silu", |
|
max_position_embeddings=2048, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
pad_token_id=None, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
pretraining_tp=1, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
attention_bias=False, |
|
attention_dropout=0.0, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.pretraining_tp = pretraining_tp |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self._rope_scaling_validation() |
|
self.attention_bias = attention_bias |
|
self.attention_dropout = attention_dropout |
|
self._attn_implementation = "flash_attention_2" |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
def _rope_scaling_validation(self): |
|
""" |
|
Validate the `rope_scaling` configuration. |
|
""" |
|
if self.rope_scaling is None: |
|
return |
|
|
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: |
|
raise ValueError( |
|
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " |
|
f"got {self.rope_scaling}" |
|
) |
|
rope_scaling_type = self.rope_scaling.get("type", None) |
|
rope_scaling_factor = self.rope_scaling.get("factor", None) |
|
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: |
|
raise ValueError( |
|
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" |
|
) |
|
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: |
|
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}") |
|
|
|
|
|
class MplugOwlVisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`MplugOwlVisionModel`]. It is used to instantiate |
|
a |
|
mPLUG-Owl vision encoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration defaults will yield a similar configuration to that of the mPLUG-Owl |
|
[x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
image_size (`int`, *optional*, defaults to 224): |
|
The size (resolution) of each image. |
|
patch_size (`int`, *optional*, defaults to 32): |
|
The size (resolution) of each patch. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-5): |
|
The epsilon used by the layer normalization layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
initializer_factor (`float`, *optional*, defaults to 1): |
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization |
|
testing). |
|
|
|
|
|
```""" |
|
|
|
model_type = "mplug_owl_vision_model" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=1024, |
|
intermediate_size=4096, |
|
projection_dim=768, |
|
num_hidden_layers=24, |
|
num_attention_heads=16, |
|
num_channels=3, |
|
image_size=448, |
|
patch_size=14, |
|
hidden_act="quick_gelu", |
|
layer_norm_eps=1e-6, |
|
attention_dropout=0.0, |
|
initializer_range=0.02, |
|
initializer_factor=1.0, |
|
use_flash_attn=False, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.projection_dim = projection_dim |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.initializer_range = initializer_range |
|
self.initializer_factor = initializer_factor |
|
self.attention_dropout = attention_dropout |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
self.use_flash_attn = use_flash_attn |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "mplug-owl": |
|
config_dict = config_dict["vision_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class MplugOwlVisualAbstractorConfig(PretrainedConfig): |
|
model_type = "mplug_owl_visual_abstract" |
|
|
|
def __init__( |
|
self, |
|
num_learnable_queries=64, |
|
hidden_size=1024, |
|
num_hidden_layers=6, |
|
num_attention_heads=16, |
|
intermediate_size=2816, |
|
attention_probs_dropout_prob=0., |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-6, |
|
encoder_hidden_size=1024, |
|
grid_size=None, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.hidden_size = hidden_size |
|
self.num_learnable_queries = num_learnable_queries |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.encoder_hidden_size = encoder_hidden_size |
|
self.grid_size = grid_size if grid_size else 32 |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "mplug-owl": |
|
config_dict = config_dict["abstractor_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
|
|
DEFAULT_VISUAL_CONFIG = { |
|
"visual_model": MplugOwlVisionConfig().to_dict(), |
|
"visual_abstractor": MplugOwlVisualAbstractorConfig().to_dict() |
|
} |
|
|
|
class MPLUGOwl2Config(LlamaConfig): |
|
model_type = "mplug_owl2" |
|
def __init__(self, visual_config=None, **kwargs): |
|
if visual_config is None: |
|
self.visual_config = DEFAULT_VISUAL_CONFIG |
|
else: |
|
self.visual_config = visual_config |
|
|
|
super().__init__( |
|
**kwargs, |
|
) |
|
|
|
if __name__ == "__main__": |
|
print(MplugOwlVisionConfig().to_dict()) |