File size: 1,213 Bytes
5f0c0d8 94dd51e 5f0c0d8 94dd51e 2adb81d 94dd51e 5f0c0d8 94dd51e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
---
language: "pt"
widget:
- text: "O paciente recebeu no hospital e falou com a médica"
- text: "COMO ESQUEMA DE MEDICAÇÃO PARA ICC PRESCRITO NO ALTA, RECEBE FUROSEMIDA 40 BID, ISOSSORBIDA 40 TID, DIGOXINA 0,25 /D, CAPTOPRIL 50 TID E ESPIRONOLACTONA 25 /D."
- text: "ESTAVA EM USO DE FUROSEMIDA 40 BID, DIGOXINA 0,25 /D, SINVASTATINA 40 /NOITE, CAPTOPRIL 50 TID, ISOSSORBIDA 20 TID, AAS 100 /D E ESPIRONOLACTONA 25 /D."
datasets:
- MacMorpho
---
# POS-Tagger Bio Portuguese
We fine-tuned the BioBERTpt(all) model with the MacMorpho corpus for the Post-Tagger task, with 10 epochs, achieving a general F1-Score of 0.9814.
Metrics:
```
Precision Recall F1 Suport
accuracy 0.98 38320
macro avg 0.95 0.92 0.93 38320
weighted avg 0.98 0.98 0.98 38320
F1: 0.981447444144733 Accuracy: 0.9815240083507307
```
## Acknowledgements
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
## Citation
```
coming soon
```
## Questions?
Please, post a Github issue on the [NLP Portuguese Chunking](https://github.com/HAILab-PUCPR/nlp-portuguese-chunking).
|