--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7034 | 0.43 | 100 | 0.6427 | | 0.6812 | 0.86 | 200 | 0.5998 | | 0.5928 | 1.29 | 300 | 0.5292 | | 0.5662 | 1.72 | 400 | 0.5095 | | 0.5547 | 2.15 | 500 | 0.5024 | | 0.5356 | 2.58 | 600 | 0.4929 | | 0.532 | 3.01 | 700 | 0.4902 | | 0.5312 | 3.44 | 800 | 0.4835 | | 0.5171 | 3.87 | 900 | 0.4800 | | 0.5178 | 4.3 | 1000 | 0.4780 | | 0.5152 | 4.73 | 1100 | 0.4777 | | 0.5064 | 5.16 | 1200 | 0.4737 | | 0.5122 | 5.59 | 1300 | 0.4726 | | 0.5042 | 6.02 | 1400 | 0.4700 | | 0.5075 | 6.45 | 1500 | 0.4712 | | 0.5057 | 6.88 | 1600 | 0.4688 | | 0.5037 | 7.31 | 1700 | 0.4674 | | 0.504 | 7.74 | 1800 | 0.4665 | | 0.4977 | 8.17 | 1900 | 0.4652 | | 0.4976 | 8.6 | 2000 | 0.4653 | | 0.5014 | 9.03 | 2100 | 0.4650 | | 0.4951 | 9.46 | 2200 | 0.4632 | | 0.493 | 9.89 | 2300 | 0.4626 | | 0.4983 | 10.32 | 2400 | 0.4628 | | 0.4952 | 10.75 | 2500 | 0.4627 | | 0.4961 | 11.18 | 2600 | 0.4616 | | 0.4965 | 11.61 | 2700 | 0.4618 | | 0.4895 | 12.04 | 2800 | 0.4615 | | 0.4898 | 12.47 | 2900 | 0.4600 | | 0.5008 | 12.9 | 3000 | 0.4614 | | 0.4896 | 13.33 | 3100 | 0.4603 | | 0.4957 | 13.76 | 3200 | 0.4612 | | 0.4878 | 14.19 | 3300 | 0.4598 | | 0.4923 | 14.62 | 3400 | 0.4594 | | 0.4939 | 15.05 | 3500 | 0.4596 | | 0.4828 | 15.48 | 3600 | 0.4591 | | 0.4865 | 15.91 | 3700 | 0.4588 | | 0.4999 | 16.34 | 3800 | 0.4600 | | 0.4895 | 16.77 | 3900 | 0.4587 | | 0.4929 | 17.2 | 4000 | 0.4591 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1