Commit
•
eb755ed
1
Parent(s):
78d0bd9
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator
Browse filesBeep boop, I am a bot from Hugging Face's automatic model evaluator 👋! We've added a new `verifyToken` field to your evaluation results to verify that they are produced by the model evaluator. Accept this PR to ensure that your results remain listed as **verified** on the [Hub leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards).
README.md
CHANGED
@@ -1,18 +1,18 @@
|
|
1 |
---
|
2 |
-
languages: en
|
3 |
license:
|
4 |
- apache-2.0
|
5 |
- bsd-3-clause
|
6 |
-
datasets:
|
7 |
-
- kmfoda/booksum
|
8 |
tags:
|
9 |
- summarization
|
10 |
- summary
|
11 |
- booksum
|
12 |
- long-document
|
13 |
- long-form
|
|
|
|
|
14 |
metrics:
|
15 |
- rouge
|
|
|
16 |
widget:
|
17 |
- text: large earthquakes along a given fault segment do not occur at random intervals
|
18 |
because it takes time to accumulate the strain energy for the rupture. The rates
|
@@ -27,39 +27,38 @@ widget:
|
|
27 |
deviation of the average recurrence interval, the more specific could be the long
|
28 |
term prediction of a future mainshock.
|
29 |
example_title: earthquakes
|
30 |
-
- text:
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
\ this function space (Section 5)."
|
63 |
example_title: scientific paper
|
64 |
- text: 'Is a else or outside the cob and tree written being of early client rope
|
65 |
and you have is for good reasons. On to the ocean in Orange for time. By''s the
|
@@ -111,68 +110,82 @@ widget:
|
|
111 |
the point of you of your model. This hidden data is complete by unseen. In other
|
112 |
words, we solve our problem of validation.'
|
113 |
example_title: transcribed audio - lecture
|
114 |
-
- text:
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
example_title: bigbird blog intro
|
159 |
-
- text:
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
176 |
example_title: Richard & Mortimer
|
177 |
parameters:
|
178 |
max_length: 48
|
@@ -194,30 +207,36 @@ model-index:
|
|
194 |
config: samsum
|
195 |
split: test
|
196 |
metrics:
|
197 |
-
-
|
198 |
-
type: rouge
|
199 |
value: 33.1401
|
|
|
200 |
verified: true
|
201 |
-
|
202 |
-
|
203 |
value: 9.3095
|
|
|
204 |
verified: true
|
205 |
-
|
206 |
-
|
207 |
value: 24.8552
|
|
|
208 |
verified: true
|
209 |
-
|
210 |
-
|
211 |
value: 29.0391
|
|
|
212 |
verified: true
|
213 |
-
|
214 |
-
|
215 |
value: 2.288182497024536
|
|
|
216 |
verified: true
|
217 |
-
|
218 |
-
|
219 |
value: 45.2173
|
|
|
220 |
verified: true
|
|
|
221 |
- task:
|
222 |
type: summarization
|
223 |
name: Summarization
|
@@ -227,30 +246,36 @@ model-index:
|
|
227 |
config: plain_text
|
228 |
split: test
|
229 |
metrics:
|
230 |
-
-
|
231 |
-
type: rouge
|
232 |
value: 39.7279
|
|
|
233 |
verified: true
|
234 |
-
|
235 |
-
|
236 |
value: 10.8944
|
|
|
237 |
verified: true
|
238 |
-
|
239 |
-
|
240 |
value: 19.7018
|
|
|
241 |
verified: true
|
242 |
-
|
243 |
-
|
244 |
value: 36.5634
|
|
|
245 |
verified: true
|
246 |
-
|
247 |
-
|
248 |
value: 2.473011016845703
|
|
|
249 |
verified: true
|
250 |
-
|
251 |
-
|
252 |
value: 212.8243
|
|
|
253 |
verified: true
|
|
|
254 |
- task:
|
255 |
type: summarization
|
256 |
name: Summarization
|
@@ -260,30 +285,36 @@ model-index:
|
|
260 |
config: default
|
261 |
split: test
|
262 |
metrics:
|
263 |
-
-
|
264 |
-
type: rouge
|
265 |
value: 42.1065
|
|
|
266 |
verified: true
|
267 |
-
|
268 |
-
|
269 |
value: 15.4079
|
|
|
270 |
verified: true
|
271 |
-
|
272 |
-
|
273 |
value: 24.8814
|
|
|
274 |
verified: true
|
275 |
-
|
276 |
-
|
277 |
value: 36.0375
|
|
|
278 |
verified: true
|
279 |
-
|
280 |
-
|
281 |
value: 1.9130958318710327
|
|
|
282 |
verified: true
|
283 |
-
|
284 |
-
|
285 |
value: 179.2184
|
|
|
286 |
verified: true
|
|
|
287 |
- task:
|
288 |
type: summarization
|
289 |
name: Summarization
|
@@ -293,30 +324,36 @@ model-index:
|
|
293 |
config: kmfoda--booksum
|
294 |
split: test
|
295 |
metrics:
|
296 |
-
-
|
297 |
-
type: rouge
|
298 |
value: 35.2154
|
|
|
299 |
verified: true
|
300 |
-
|
301 |
-
|
302 |
value: 6.8702
|
|
|
303 |
verified: true
|
304 |
-
|
305 |
-
|
306 |
value: 17.6693
|
|
|
307 |
verified: true
|
308 |
-
|
309 |
-
|
310 |
value: 32.8365
|
|
|
311 |
verified: true
|
312 |
-
|
313 |
-
|
314 |
value: 2.9878039360046387
|
|
|
315 |
verified: true
|
316 |
-
|
317 |
-
|
318 |
value: 200.6785
|
|
|
319 |
verified: true
|
|
|
320 |
- task:
|
321 |
type: summarization
|
322 |
name: Summarization
|
@@ -326,30 +363,36 @@ model-index:
|
|
326 |
config: y
|
327 |
split: test
|
328 |
metrics:
|
329 |
-
-
|
330 |
-
type: rouge
|
331 |
value: 37.376
|
|
|
332 |
verified: true
|
333 |
-
|
334 |
-
|
335 |
value: 11.4432
|
|
|
336 |
verified: true
|
337 |
-
|
338 |
-
|
339 |
value: 22.2754
|
|
|
340 |
verified: true
|
341 |
-
|
342 |
-
|
343 |
value: 32.5087
|
|
|
344 |
verified: true
|
345 |
-
|
346 |
-
|
347 |
value: 2.9867310523986816
|
|
|
348 |
verified: true
|
349 |
-
|
350 |
-
|
351 |
value: 172.7776
|
|
|
352 |
verified: true
|
|
|
353 |
---
|
354 |
|
355 |
# pszemraj/pegasus-x-large-book-summary
|
|
|
1 |
---
|
|
|
2 |
license:
|
3 |
- apache-2.0
|
4 |
- bsd-3-clause
|
|
|
|
|
5 |
tags:
|
6 |
- summarization
|
7 |
- summary
|
8 |
- booksum
|
9 |
- long-document
|
10 |
- long-form
|
11 |
+
datasets:
|
12 |
+
- kmfoda/booksum
|
13 |
metrics:
|
14 |
- rouge
|
15 |
+
languages: en
|
16 |
widget:
|
17 |
- text: large earthquakes along a given fault segment do not occur at random intervals
|
18 |
because it takes time to accumulate the strain energy for the rupture. The rates
|
|
|
27 |
deviation of the average recurrence interval, the more specific could be the long
|
28 |
term prediction of a future mainshock.
|
29 |
example_title: earthquakes
|
30 |
+
- text: ' A typical feed-forward neural field algorithm. Spatiotemporal coordinates
|
31 |
+
are fed into a neural network that predicts values in the reconstructed domain.
|
32 |
+
Then, this domain is mapped to the sensor domain where sensor measurements are
|
33 |
+
available as supervision. Class and Section Problems Addressed Generalization
|
34 |
+
(Section 2) Inverse problems, ill-posed problems, editability; symmetries. Hybrid
|
35 |
+
Representations (Section 3) Computation & memory efficiency, representation capacity,
|
36 |
+
editability: Forward Maps (Section 4) Inverse problems Network Architecture (Section
|
37 |
+
5) Spectral bias, integration & derivatives. Manipulating Neural Fields (Section
|
38 |
+
6) Edit ability, constraints, regularization. Table 2: The five classes of techniques
|
39 |
+
in the neural field toolbox each addresses problems that arise in learning, inference,
|
40 |
+
and control. (Section 3). We can supervise reconstruction via differentiable forward
|
41 |
+
maps that transform Or project our domain (e.g, 3D reconstruction via 2D images;
|
42 |
+
Section 4) With appropriate network architecture choices, we can overcome neural
|
43 |
+
network spectral biases (blurriness) and efficiently compute derivatives and integrals
|
44 |
+
(Section 5). Finally, we can manipulate neural fields to add constraints and regularizations,
|
45 |
+
and to achieve editable representations (Section 6). Collectively, these classes
|
46 |
+
constitute a ''toolbox'' of techniques to help solve problems with neural fields
|
47 |
+
There are three components in a conditional neural field: (1) An encoder or inference
|
48 |
+
function € that outputs the conditioning latent variable 2 given an observation
|
49 |
+
0 E(0) =2. 2 is typically a low-dimensional vector, and is often referred to aS
|
50 |
+
a latent code Or feature code_ (2) A mapping function 4 between Z and neural field
|
51 |
+
parameters O: Y(z) = O; (3) The neural field itself $. The encoder € finds the
|
52 |
+
most probable z given the observations O: argmaxz P(2/0). The decoder maximizes
|
53 |
+
the inverse conditional probability to find the most probable 0 given Z: arg-
|
54 |
+
max P(Olz). We discuss different encoding schemes with different optimality guarantees
|
55 |
+
(Section 2.1.1), both global and local conditioning (Section 2.1.2), and different
|
56 |
+
mapping functions Y (Section 2.1.3) 2. Generalization Suppose we wish to estimate
|
57 |
+
a plausible 3D surface shape given a partial or noisy point cloud. We need a suitable
|
58 |
+
prior over the sur- face in its reconstruction domain to generalize to the partial
|
59 |
+
observations. A neural network expresses a prior via the function space of its
|
60 |
+
architecture and parameters 0, and generalization is influenced by the inductive
|
61 |
+
bias of this function space (Section 5).'
|
|
|
62 |
example_title: scientific paper
|
63 |
- text: 'Is a else or outside the cob and tree written being of early client rope
|
64 |
and you have is for good reasons. On to the ocean in Orange for time. By''s the
|
|
|
110 |
the point of you of your model. This hidden data is complete by unseen. In other
|
111 |
words, we solve our problem of validation.'
|
112 |
example_title: transcribed audio - lecture
|
113 |
+
- text: 'Transformer-based models have shown to be very useful for many NLP tasks.
|
114 |
+
However, a major limitation of transformers-based models is its O(n^2)O(n 2) time
|
115 |
+
& memory complexity (where nn is sequence length). Hence, it''s computationally
|
116 |
+
very expensive to apply transformer-based models on long sequences n > 512n>512.
|
117 |
+
Several recent papers, e.g. Longformer, Performer, Reformer, Clustered attention
|
118 |
+
try to remedy this problem by approximating the full attention matrix. You can
|
119 |
+
checkout 🤗''s recent blog post in case you are unfamiliar with these models.
|
120 |
+
|
121 |
+
BigBird (introduced in paper) is one of such recent models to address this issue.
|
122 |
+
BigBird relies on block sparse attention instead of normal attention (i.e. BERT''s
|
123 |
+
attention) and can handle sequences up to a length of 4096 at a much lower computational
|
124 |
+
cost compared to BERT. It has achieved SOTA on various tasks involving very long
|
125 |
+
sequences such as long documents summarization, question-answering with long contexts.
|
126 |
+
|
127 |
+
BigBird RoBERTa-like model is now available in 🤗Transformers. The goal of this
|
128 |
+
post is to give the reader an in-depth understanding of big bird implementation
|
129 |
+
& ease one''s life in using BigBird with 🤗Transformers. But, before going into
|
130 |
+
more depth, it is important to remember that the BigBird''s attention is an approximation
|
131 |
+
of BERT''s full attention and therefore does not strive to be better than BERT''s
|
132 |
+
full attention, but rather to be more efficient. It simply allows to apply transformer-based
|
133 |
+
models to much longer sequences since BERT''s quadratic memory requirement quickly
|
134 |
+
becomes unbearable. Simply put, if we would have ∞ compute & ∞ time, BERT''s attention
|
135 |
+
would be preferred over block sparse attention (which we are going to discuss
|
136 |
+
in this post).
|
137 |
+
|
138 |
+
If you wonder why we need more compute when working with longer sequences, this
|
139 |
+
blog post is just right for you!
|
140 |
+
|
141 |
+
Some of the main questions one might have when working with standard BERT-like
|
142 |
+
attention include:
|
143 |
+
|
144 |
+
Do all tokens really have to attend to all other tokens? Why not compute attention
|
145 |
+
only over important tokens? How to decide what tokens are important? How to attend
|
146 |
+
to just a few tokens in a very efficient way? In this blog post, we will try to
|
147 |
+
answer those questions.
|
148 |
+
|
149 |
+
What tokens should be attended to? We will give a practical example of how attention
|
150 |
+
works by considering the sentence ''BigBird is now available in HuggingFace for
|
151 |
+
extractive question answering''. In BERT-like attention, every word would simply
|
152 |
+
attend to all other tokens.
|
153 |
+
|
154 |
+
Let''s think about a sensible choice of key tokens that a queried token actually
|
155 |
+
only should attend to by writing some pseudo-code. Will will assume that the token
|
156 |
+
available is queried and build a sensible list of key tokens to attend to.
|
157 |
+
|
158 |
+
>>> # let''s consider following sentence as an example >>> example = [''BigBird'',
|
159 |
+
''is'', ''now'', ''available'', ''in'', ''HuggingFace'', ''for'', ''extractive'',
|
160 |
+
''question'', ''answering'']
|
161 |
+
|
162 |
+
>>> # further let''s assume, we''re trying to understand the representation of
|
163 |
+
''available'' i.e. >>> query_token = ''available'' >>> # We will initialize an
|
164 |
+
empty `set` and fill up the tokens of our interest as we proceed in this section.
|
165 |
+
>>> key_tokens = [] # => currently ''available'' token doesn''t have anything
|
166 |
+
to attend Nearby tokens should be important because, in a sentence (sequence of
|
167 |
+
words), the current word is highly dependent on neighboring past & future tokens.
|
168 |
+
This intuition is the idea behind the concept of sliding attention.'
|
169 |
example_title: bigbird blog intro
|
170 |
+
- text: 'To be fair, you have to have a very high IQ to understand Rick and Morty.
|
171 |
+
The humour is extremely subtle, and without a solid grasp of theoretical physics
|
172 |
+
most of the jokes will go over a typical viewer''s head. There''s also Rick''s
|
173 |
+
nihilistic outlook, which is deftly woven into his characterisation- his personal
|
174 |
+
philosophy draws heavily from Narodnaya Volya literature, for instance. The fans
|
175 |
+
understand this stuff; they have the intellectual capacity to truly appreciate
|
176 |
+
the depths of these jokes, to realise that they''re not just funny- they say something
|
177 |
+
deep about LIFE. As a consequence people who dislike Rick & Morty truly ARE idiots-
|
178 |
+
of course they wouldn''t appreciate, for instance, the humour in Rick''s existential
|
179 |
+
catchphrase ''Wubba Lubba Dub Dub,'' which itself is a cryptic reference to Turgenev''s
|
180 |
+
Russian epic Fathers and Sons. I''m smirking right now just imagining one of those
|
181 |
+
addlepated simpletons scratching their heads in confusion as Dan Harmon''s genius
|
182 |
+
wit unfolds itself on their television screens. What fools.. how I pity them.
|
183 |
+
😂
|
184 |
+
|
185 |
+
And yes, by the way, i DO have a Rick & Morty tattoo. And no, you cannot see it.
|
186 |
+
It''s for the ladies'' eyes only- and even then they have to demonstrate that
|
187 |
+
they''re within 5 IQ points of my own (preferably lower) beforehand. Nothin personnel
|
188 |
+
kid 😎'
|
189 |
example_title: Richard & Mortimer
|
190 |
parameters:
|
191 |
max_length: 48
|
|
|
207 |
config: samsum
|
208 |
split: test
|
209 |
metrics:
|
210 |
+
- type: rouge
|
|
|
211 |
value: 33.1401
|
212 |
+
name: ROUGE-1
|
213 |
verified: true
|
214 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjQ1NjY1OGVjYWEwMzBjMzk3ZmMyZDA0ZTcxOTdmZTUxNTc0OGYxYmY3MzJkMzFmYTVjNzU2ZTk4MzE0NWMzMSIsInZlcnNpb24iOjF9.PSHB6DMF6tkwSw5nsFE57a2ApRAy_tkS6ziKA6PSTWddEdaqfca4pfig6_olmRmcS4KxN6HHcsmioHzv4LJQBw
|
215 |
+
- type: rouge
|
216 |
value: 9.3095
|
217 |
+
name: ROUGE-2
|
218 |
verified: true
|
219 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzk3MTA3NmY1OGE3MzFjZTJhYWYzNGU4NTUzMTgwM2Y1NWZjMmEyNDNmNmEzYmQzZThjOGExMjc2ZjAyZjMzZCIsInZlcnNpb24iOjF9.tfgp8p-WlkVrfducTSg4zs-byeZMCmdZw1aizPQHXm_qRAwGtKcuVkZcmza5Y3o3VqsAEmGzg5HQD1vnZvWIDA
|
220 |
+
- type: rouge
|
221 |
value: 24.8552
|
222 |
+
name: ROUGE-L
|
223 |
verified: true
|
224 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTVmMTIwNDQwNTI4MmI2MmY1ODc1Mjk0NGQ5ZWE4ZTYzOGNkMjY2ZmJhMjg2MTZlNTdhYTA2ZDAxNTFjMjA2MSIsInZlcnNpb24iOjF9.9HLgy9842oIDm6ABb3L94R1P4zAqTI0QN8aP62xzIyDxUXTbWw68PEDufYLiBJbTgZ8ElopZ9I7aou2zCgXeAA
|
225 |
+
- type: rouge
|
226 |
value: 29.0391
|
227 |
+
name: ROUGE-LSUM
|
228 |
verified: true
|
229 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmNhYWJjYjdjMzMxMmE4ZTE4NGEzMDdmZDZjODI5ZWRjZWJmYTEyZGIzYWQ2NjM3YzQ4MjI4ZTM4MmU5MzRjZSIsInZlcnNpb24iOjF9.d2yoVdmxjVJnsgIYFiLuaBO5Krgw4Axl5yeOSTKrvHygrAxoqT1nl4anzQiyoR3PwYBXwBkwmgpJUfZ7RNXtDQ
|
230 |
+
- type: loss
|
231 |
value: 2.288182497024536
|
232 |
+
name: loss
|
233 |
verified: true
|
234 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzM5NGIwODMxOTA3MTY3ODc2ZDczYTNmMTMwM2QyZmNlZjFmZDJjMGY3NWNkMDEyYzA4OTA2ZDRiODY3Zjg4OCIsInZlcnNpb24iOjF9.8k9mC050OS7mQSR9oA8liDRDQvEx1VxmTXGLmDYJVYYtTh2HYJFGP8Vy_krocFRIYDxh-IHPEOOSr5NrLMWHBA
|
235 |
+
- type: gen_len
|
236 |
value: 45.2173
|
237 |
+
name: gen_len
|
238 |
verified: true
|
239 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWZhNzQ5OTQ5Yjg5YjhlOTZiZmJhZjZiODNmY2E2OTg4YTg4NWVhYzRkNzM2Mzk4NzdlMDgxM2M4NjY2YzhhYSIsInZlcnNpb24iOjF9.tDEEsPUclZDygAdGhNrBGrF24vR8ao08Nw7hmtUt5lmSZZZK_u-8rpz97QgVS6MCJdjFVnbYC4bkFnlQWI_FAA
|
240 |
- task:
|
241 |
type: summarization
|
242 |
name: Summarization
|
|
|
246 |
config: plain_text
|
247 |
split: test
|
248 |
metrics:
|
249 |
+
- type: rouge
|
|
|
250 |
value: 39.7279
|
251 |
+
name: ROUGE-1
|
252 |
verified: true
|
253 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTAxODk3OTUwMTIzODU3NzU2YzAzZjE2NTM3MzBjNDA0ZWRmZGU3NWUzNTg1YThhNDQ1NjQ5ZmM3OWI2YzBhNSIsInZlcnNpb24iOjF9.vnNKucBNt2-nIyODj9P2HeaWPX5AQR8L-DL8QzrO7kj58-vZnjT6hsAGmepRNzdZ1TLF-3j2J2plcNJ8lUO8Dg
|
254 |
+
- type: rouge
|
255 |
value: 10.8944
|
256 |
+
name: ROUGE-2
|
257 |
verified: true
|
258 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjYzMmIxOTJmZjkxOGI5N2U0NTRmMmQwOGJhMzMxYWIzMWMzYzUwMDEyMDdiZDQ2YTUzOWU0OTViMTI2YTAwYiIsInZlcnNpb24iOjF9.De0PaAikWqfWpoIXTCYP-mSFu3PUATLX08Qq74OHXM8784heFVDX1E1sXlh_QbbKJbuMuZtTKM4qr7oLUizOAw
|
259 |
+
- type: rouge
|
260 |
value: 19.7018
|
261 |
+
name: ROUGE-L
|
262 |
verified: true
|
263 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzI3MjQzOGQ3MGE3NDNkZTEyMWRkYjUyYTYzNDEwOWVjMGFmNTBiZjE4ZTBhMGYzMmI1Yzk0YjBmYmIzMWMxZSIsInZlcnNpb24iOjF9.FVikJ5Ma0gUgM-tpbomWXnC4jtmvhxqikPqCk84t4IbIdU0CIYGTQEONiz-VqI0fJeNrnTS6lxpBv7XxKoq3BQ
|
264 |
+
- type: rouge
|
265 |
value: 36.5634
|
266 |
+
name: ROUGE-LSUM
|
267 |
verified: true
|
268 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTI2OTVmNDZiZWE5ZjNkODIwZjJiNTU2ZjJjYjczODUwM2JiNDEzYmE3N2U5YWM5NzJjOWEzMmYzZjdlYWJmYyIsInZlcnNpb24iOjF9.poR4zcqRvdaierfWFdTa53Cv6ZbNbnRwyRTi9HukHF5AWAQgc6zpBLkwOYFYoWjuSH83ohWeMM3MoIdw3zypBw
|
269 |
+
- type: loss
|
270 |
value: 2.473011016845703
|
271 |
+
name: loss
|
272 |
verified: true
|
273 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDFmMjg3NWQ2YTMxMTc1OGZiYWYzNjg5NDY3MWE4MjY5ZDQxZDZhZGI1OTc5MzZkZGEzYmVlNWFiMzZjNDdhNCIsInZlcnNpb24iOjF9.05nKB3SmEfFKSduJqlleF4Fd2_IhwJS8eTOrnzZYCQQfLCfpJAZLhp3eLQCuBY4htd-FNrZftrThL66zVxyrCQ
|
274 |
+
- type: gen_len
|
275 |
value: 212.8243
|
276 |
+
name: gen_len
|
277 |
verified: true
|
278 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGNjMTg4ZDZlZjAxZGNhN2M0NWI0ZTA0OWEzNDkzNDAzOTJhODA2MmVkODI4YjYzN2FiOTU1ZDMwM2VlNWMyYyIsInZlcnNpb24iOjF9.WYx6XJFKokY2heoN-jpAMp1Z1gsyJus3zpktQgNd0FOYJxOUqW40A0kkHtd15y4dUhsbccLpuJGY1fNJgHOiDw
|
279 |
- task:
|
280 |
type: summarization
|
281 |
name: Summarization
|
|
|
285 |
config: default
|
286 |
split: test
|
287 |
metrics:
|
288 |
+
- type: rouge
|
|
|
289 |
value: 42.1065
|
290 |
+
name: ROUGE-1
|
291 |
verified: true
|
292 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDJhNDM2MWEwMjJlYjRmZTVkYzljODcwMzlmMGUxMDA4ZmRjNjM0NmY3ZWJlMmZjNGI3NDQ3NTQyOTQ3MjBkNSIsInZlcnNpb24iOjF9.l1MiZbXyFyXAcsfFChMrTvSaBhzBR6AuDnBuII8zY3Csz3ShWK0vo09MkQdZ1epe8PKWV9wwUBuJyKk3wL7MDw
|
293 |
+
- type: rouge
|
294 |
value: 15.4079
|
295 |
+
name: ROUGE-2
|
296 |
verified: true
|
297 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTY3NDBkYTVkNjdhY2I0ZmY0NTA4YzVkMGE5YWE5ODdjOGE1MDhkOTJhOWY3NmI2ZWI1MGU2MGI1NDRlYjI3MSIsInZlcnNpb24iOjF9.VN-5eK2SzFDCJnFTHHu7XCU_lynaxW_JEDc3llmcNo_ffDgRmISHHGaqV7fPFymBBMXpPly7XblO_sukyqj1Cg
|
298 |
+
- type: rouge
|
299 |
value: 24.8814
|
300 |
+
name: ROUGE-L
|
301 |
verified: true
|
302 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDYyNGZmNDY3MTY4YzI4ZjZhODE0NGIyN2ZkOGEyYzM3MWZjM2QzZTg5ZjNmZmYzZDE5NzhiZDQ4OGM1YjNiMyIsInZlcnNpb24iOjF9.L73M1M5XdMQkf8zSdfLN0MUrxtO0r6UiLjoOkHfrIGbWNsNJ8tU5lciYFNIhJrICUL8LchCsFqR9LAClKS4bCg
|
303 |
+
- type: rouge
|
304 |
value: 36.0375
|
305 |
+
name: ROUGE-LSUM
|
306 |
verified: true
|
307 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTBlMTQ5OTQxNTA3ZmFiMGYyZWQ0MGM0ODY2YWI3MzgyNjkwNzQyM2FmNGRjMzc3MjJmZDZkOWY4M2RhZTg2MSIsInZlcnNpb24iOjF9.IiMSSVahBgH8n34bGCC_DDGpujDXQbIvGhlcpVV2EBVQLLWUqcCy5WwBdbRrxPC-asBRCNERQxj8Uii4FvPsDQ
|
308 |
+
- type: loss
|
309 |
value: 1.9130958318710327
|
310 |
+
name: loss
|
311 |
verified: true
|
312 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTg2NTMxZDE3MDg3MDFkMTYxNjY1OTc5YjQ4ODcyMGUxMTFiZjJiNDgyYWZhN2NjZmE1MDQ1NTRmZGY0NjQzZSIsInZlcnNpb24iOjF9.kADUBMO8i6-oGDDt1cOiGMrGcMkF_Qc1jSpS2NSFyksDRusQa_YuuShefF4DuHVEr3CS0hNjjRH9_JBeX9ZQDg
|
313 |
+
- type: gen_len
|
314 |
value: 179.2184
|
315 |
+
name: gen_len
|
316 |
verified: true
|
317 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjM4NGNiMTY3YzZjMzg4MTRiMDdiZDFiMzA1ZDIyMDM2MDk1OWRhYWQzN2UxZDNlODIxOWVhY2JlYjk4Mjk5YyIsInZlcnNpb24iOjF9.nU8ImMNWgjg9BKjUBJQLFaJOBq3kyIne8ldlpL0OV0e4888wOntIAcJP0dCCYfRSLVmZuXQ1M8cpDuTf50hNCw
|
318 |
- task:
|
319 |
type: summarization
|
320 |
name: Summarization
|
|
|
324 |
config: kmfoda--booksum
|
325 |
split: test
|
326 |
metrics:
|
327 |
+
- type: rouge
|
|
|
328 |
value: 35.2154
|
329 |
+
name: ROUGE-1
|
330 |
verified: true
|
331 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWQ5MGMzNDc4MDBiNmRiNDY5ZDM4N2QzYTJlYTNiYTcwNDBlMzdlM2I4N2VmM2ZjMmQ3NGU3OTRlMTMzMTg3NyIsInZlcnNpb24iOjF9.E55gu7HvMwc4HejF3YOD6yqQJj7_6GCoCMWm78sY5_w2glR-oM98tu9IsG27VaPva7UklxsspzT2DIVaVKY0CQ
|
332 |
+
- type: rouge
|
333 |
value: 6.8702
|
334 |
+
name: ROUGE-2
|
335 |
verified: true
|
336 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjFhN2JlYzlmMGZmYzkwYjBlNjY4YzhlYzNmMTdmZWYyYmU3NWI0ZTRkMTgxNmRiM2EyZWMyMWFjY2JkNzg1MCIsInZlcnNpb24iOjF9.I9BoHbGt8LLNtLAssIXm9tQ4lHqFCMt0zJS_zTezzxGRMS5On71c3jnlzrDtwEm6wjmZEwYIJK8qqJh-Qa5YAA
|
337 |
+
- type: rouge
|
338 |
value: 17.6693
|
339 |
+
name: ROUGE-L
|
340 |
verified: true
|
341 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGZlZjcwOTZjMmNjZWFkM2M5Zjg1OTgzMzcxOTM2Y2RkMzY4NGU2NDE2MTVjMjcyMWIwNWI4ODc0YTY3YTA2MSIsInZlcnNpb24iOjF9.Ou1C6U6PrOtXPxlk9PMucdJ_vlnVnSk94QrLJL4b_g2pcY3D80Xrw09iz4BTOPzZ2UTNBLyn8YdLY3m2vHpiAQ
|
342 |
+
- type: rouge
|
343 |
value: 32.8365
|
344 |
+
name: ROUGE-LSUM
|
345 |
verified: true
|
346 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmIzMGQ5MzQ1MjI4MTU0ZGZkZTRhODllNWQyOTQ4ZjA5YWE4ZTJjMzQ2ZWQzOGFiMWUzZDMxOTU5NzkxYjliZiIsInZlcnNpb24iOjF9.2mYURQZYo7e3AY0tfkpqFMNhoHvrysvBXza-XYYrX_xLpruMU9Gzrwc3jvpi2wtp4eeyhzIiZJvH0O6la6zxCg
|
347 |
+
- type: loss
|
348 |
value: 2.9878039360046387
|
349 |
+
name: loss
|
350 |
verified: true
|
351 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGU0ODBmN2I3OGFkNTFiM2I3YWQyNmUzNzUwYzEwNzczZWEwZjIxYTAwZDE2ZTIwMGE3ZGNmMDQzNTFmNjEwYyIsInZlcnNpb24iOjF9.0IKWIImKTXqysQUb2IMPk2eeHlOcBjndiPcU42nfFBMhRTqeXdBqOCP6cidlho7pVN4hsC-77ArJ9pZlbTFuBg
|
352 |
+
- type: gen_len
|
353 |
value: 200.6785
|
354 |
+
name: gen_len
|
355 |
verified: true
|
356 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDUzYTE3MmIxZGM3MWI1MjNhMTU3MTdkMjJjNjY5Y2UzYTdjYWRiY2I4MmUxMDY4NTA5NWZjYWU0NzliODdkYiIsInZlcnNpb24iOjF9.BqmCaWzbCMNUied6zNO744Dl-0LC47FCIv-l8kDjkhSkwQcb_hi93VYts5PTsrFY_MmM8j7AsY1PiFr6nNFMBQ
|
357 |
- task:
|
358 |
type: summarization
|
359 |
name: Summarization
|
|
|
363 |
config: y
|
364 |
split: test
|
365 |
metrics:
|
366 |
+
- type: rouge
|
|
|
367 |
value: 37.376
|
368 |
+
name: ROUGE-1
|
369 |
verified: true
|
370 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWI4ZjMxODcxMThiMzE3NjQ3Zjg0NzhmZjlhY2ZmYjQwMGY5ZjlkZGY1MzZmY2M5YTU4NmY1Y2NhZDA3YWFkOCIsInZlcnNpb24iOjF9.sYh4IynXgOpVetYYSWUp0v5QZWvXC1x7_uJR0LZUxaeYKEc4yfICNmDOPzNzoroaV4ELeOaPjHQpYVm-lpAHBA
|
371 |
+
- type: rouge
|
372 |
value: 11.4432
|
373 |
+
name: ROUGE-2
|
374 |
verified: true
|
375 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTZkOGIyYzU3YTQ5ZTFmMDU3MjQ5ZWM2NGQ1MzgwMDYyZDkxN2Q2YjgyZTkzMTEyYjczMGJiYmNkZmU5MTQ3NSIsInZlcnNpb24iOjF9.Qk38acpjPjU64Z1nXEuqMXjKZrGvdC9oY586EjuCPeEAJCSzKimp8FsB-1QrjMH73q6rN2CdumJUxih6HF-KAA
|
376 |
+
- type: rouge
|
377 |
value: 22.2754
|
378 |
+
name: ROUGE-L
|
379 |
verified: true
|
380 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzlmOTUxYmEzYzYyYmVjNGZlNzNiZWIwZmQ5OWVlY2U3NTBiZDExYWUwODQ0Y2ZjMmQyMTNmMTlmNjdmZWUwNCIsInZlcnNpb24iOjF9.bUVhxaepySyaityby71j6h4YO_l4x8OSeZoblagwUMYGXRc0Ej286QzEtZFeRGygMJ5sjUN_loWCtOmAnHY2BA
|
381 |
+
- type: rouge
|
382 |
value: 32.5087
|
383 |
+
name: ROUGE-LSUM
|
384 |
verified: true
|
385 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDEyNjM5NjAzYTNjN2MwZTY4MWY2Y2U5YWUyM2Y1YjAyNjBhZTM0YTAyZjM5N2M1ZDkxOWUxNzE2OWZkYTBmMSIsInZlcnNpb24iOjF9.QfMHkcoAR3xqzsgL1xjHk3Lui1xhE12pJKvYujQ_h5o6PBXT79dsENsrqDGGBjiKdTKNwWqADgaviy1VrWMDCQ
|
386 |
+
- type: loss
|
387 |
value: 2.9867310523986816
|
388 |
+
name: loss
|
389 |
verified: true
|
390 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTUzM2Q5MmE5MzU4YmFlMjFiMmUzZGU2NDAzMTQ1Y2NjZDVlYWI3NGE5MjM0NmMxMjdiOWI3MTU0NDk3NmNkZiIsInZlcnNpb24iOjF9.VoQqu6ZU3AR_cji82UkpvbLnTmZ17fZmR2E4DeonjCyTZpyyfvUsQ2nbKDovQf34DBkYXENk42EUsUF1mBZNBg
|
391 |
+
- type: gen_len
|
392 |
value: 172.7776
|
393 |
+
name: gen_len
|
394 |
verified: true
|
395 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTEzNTMyMDY1N2Q5ZTMxNjNlMTI0Nzk5ZDc1ZWQ5Y2IwZWM0NWNhNWY2MTk3YTRkYzUwMTI4NjZiOWVhOGQwYSIsInZlcnNpb24iOjF9.-Rek2VFmGqIEgqeFoxU_0aCWdFbGYi9BV5c7x-izm9_4vtZdYQ4ITXm4T8C3UlpOax60veJQt2Uax5vyiFc9Ag
|
396 |
---
|
397 |
|
398 |
# pszemraj/pegasus-x-large-book-summary
|