File size: 3,225 Bytes
cc5499a
 
 
 
 
 
aae22d9
cc5499a
 
 
 
 
 
e5c443e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc5499a
 
 
 
 
e5c443e
cc5499a
e5c443e
cc5499a
e5c443e
 
cc5499a
 
4b27f62
cc5499a
4b27f62
cc5499a
4b27f62
cc5499a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b27f62
cc5499a
4b27f62
 
cc5499a
4b27f62
 
cc5499a
 
4b27f62
cc5499a
 
 
 
 
 
aae22d9
cc5499a
 
4b27f62
cc5499a
4b27f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
license: other
tags:
- generated_from_trainer
- opt
- custom-license
- non-commercial
- email
- auto-complete
- 125m
datasets:
- aeslc
widget:
- text: 'Hey <NAME>,


    Thank you for signing up for my weekly newsletter. Before we get started, you''ll
    have to confirm your email address.'
  example_title: newsletter
- text: 'Hi <NAME>,


    I hope this email finds you well. Let me start by saying that I am a big fan of
    your work.'
  example_title: fan
- text: 'Greetings <NAME>,


    I hope you had a splendid evening at the Company sausage eating festival. I am
    reaching out because'
  example_title: festival
- text: 'Good Morning <NAME>,


    I was just thinking to myself about how much I love creating value'
  example_title: value
- text: URGENT - I need
  example_title: URGENT
parameters:
  min_length: 4
  max_length: 64
  length_penalty: 0.7
  no_repeat_ngram_size: 3
  do_sample: false
  num_beams: 4
  early_stopping: true
  repetition_penalty: 3.5
  use_fast: false
base_model: facebook/opt-125m
---
> NOTE: there is currently a bug with huggingface API for OPT models. Please use the [colab notebook](https://colab.research.google.com/gist/pszemraj/033dc9a38da31ced7a0343091ba42e31/email-autocomplete-demo-125m.ipynb) to test :) 

# opt for email generation - 125m

Why write the rest of your email when you can generate it?

```
from transformers import pipeline
model_tag = "pszemraj/opt-125m-email-generation"
generator = pipeline(
              'text-generation', 
              model=model_tag, 
              use_fast=False,
              do_sample=False,
            )
            
prompt = """
Hello, 
Following up on the bubblegum shipment."""
generator(
    prompt,
    max_length=96,
) # generate
```
- [colab notebook](https://colab.research.google.com/gist/pszemraj/033dc9a38da31ced7a0343091ba42e31/email-autocomplete-demo-125m.ipynb) for testing/use

## About


This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on an `aeslc` dataset.


- Emails, phone numbers, etc., were attempted to be excluded in a dataset preparation step using [clean-text](https://pypi.org/project/clean-text/) in Python.
- Note that API is restricted to generating 64 tokens - you can generate longer emails by using this in a text-generation `pipeline` object

It achieves the following results on the evaluation set:
- Loss: 2.5552

## Intended uses & limitations

- OPT models cannot be used commercially
- [here is a GitHub gist](https://gist.github.com/pszemraj/c1b0a76445418b6bbddd5f9633d1bb7f) for a script to generate emails in the console or to a text file.

## Training and evaluation data

- the `email_body` field of train + validation (get more data) from the [aeslc](https://huggingface.co/datasets/aeslc) dataset.


### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.8245        | 1.0   | 129  | 2.8030          |
| 2.521         | 2.0   | 258  | 2.6343          |
| 2.2074        | 3.0   | 387  | 2.5595          |
| 2.0145        | 4.0   | 516  | 2.5552          |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Tokenizers 0.12.1