asofter commited on
Commit
dbeed6b
1 Parent(s): 3aa64a8

End of training

Browse files
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/deberta-v3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - recall
9
+ - precision
10
+ - f1
11
+ model-index:
12
+ - name: deberta-v3-base-prompt-injection-v1
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # deberta-v3-base-prompt-injection-v1
20
+
21
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0010
24
+ - Accuracy: 0.9999
25
+ - Recall: 0.9997
26
+ - Precision: 0.9998
27
+ - F1: 0.9998
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_steps: 500
53
+ - num_epochs: 3
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 |
58
+ |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|
59
+ | 0.0038 | 1.0 | 36130 | 0.0026 | 0.9998 | 0.9994 | 0.9992 | 0.9993 |
60
+ | 0.0001 | 2.0 | 72260 | 0.0021 | 0.9998 | 0.9997 | 0.9989 | 0.9993 |
61
+ | 0.0 | 3.0 | 108390 | 0.0015 | 0.9999 | 0.9997 | 0.9995 | 0.9996 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.35.2
67
+ - Pytorch 2.1.1+cu121
68
+ - Datasets 2.15.0
69
+ - Tokenizers 0.15.0
deberta-v3-base-prompt-injection-v1_emissions.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ timestamp,project_name,run_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2023-11-25T17:36:56,deberta-v3-base-prompt-injection-v1_emissions,a3c7db83-094a-4990-b287-8b2287213c94,33721.252032995224,0.9992452046508414,2.9632506043165606e-05,42.5,62.06199585789132,5.787036895751953,0.39809487054447334,2.25471590377128,0.05418500960607557,2.706995783921832,United States,USA,virginia,,,Linux-5.10.198-187.748.amzn2.x86_64-x86_64-with-glibc2.26,3.10.13,2.3.1,4,AMD EPYC 7R32,1,1 x NVIDIA A10G,-77.4903,39.0469,15.432098388671875,machine,N,1.0
emissions.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ timestamp,project_name,run_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2023-11-25T17:36:39,codecarbon,eb0935eb-df8e-40ce-bfb9-217b4447d621,33705.04844260216,0.9990662916168788,2.9641443575381107e-05,42.5,182.2944905268953,5.787036895751953,0.3979035085568824,2.254447534389918,0.05416005831018278,2.706511101256985,United States,USA,virginia,,,Linux-5.10.198-187.748.amzn2.x86_64-x86_64-with-glibc2.26,3.10.13,2.3.1,4,AMD EPYC 7R32,1,1 x NVIDIA A10G,-77.4903,39.0469,15.432098388671875,machine,N,1.0