prajjwal1 commited on
Commit
ce27ec2
1 Parent(s): f0dc457

updated readme

Browse files
Files changed (1) hide show
  1. README.md +5 -2
README.md CHANGED
@@ -16,7 +16,7 @@ tags:
16
 
17
  The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert).
18
 
19
- This is one of the smaller pre-trained BERT variants, together with [bert-mini](https://huggingface.co/prajjwal1/bert-mini), [bert-tiny](https://huggingface.co/prajjwal1/bert-tiny), [bert-small](https://huggingface.co/prajjwal1/bert-small) and [bert-medium](https://huggingface.co/prajjwal1/bert-medium). They were introduced in the study [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), and ported to HF for the study [Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics](https://arxiv.org/abs/2110.01518). These models are supposed to be trained on a downstream task.
20
 
21
  If you use the model, please consider citing both the papers:
22
  ```
@@ -48,12 +48,15 @@ If you use the model, please consider citing both the papers:
48
  }
49
 
50
  ```
 
 
 
 
51
 
52
  Other models to check out:
53
  - `prajjwal1/bert-tiny` (L=2, H=128) [Model Link](https://huggingface.co/prajjwal1/bert-tiny)
54
  - `prajjwal1/bert-mini` (L=4, H=256) [Model Link](https://huggingface.co/prajjwal1/bert-mini)
55
  - `prajjwal1/bert-small` (L=4, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-small)
56
- - `prajjwal1/bert-medium` (L=8, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-medium)
57
 
58
  Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli).
59
 
 
16
 
17
  The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert).
18
 
19
+ This is one of the smaller pre-trained BERT variants, together with [bert-tiny](https://huggingface.co/prajjwal1/bert-tiny), [bert-mini](https://huggingface.co/prajjwal1/bert-mini) and [bert-small](https://huggingface.co/prajjwal1/bert-small). They were introduced in the study `Well-Read Students Learn Better: On the Importance of Pre-training Compact Models` ([arxiv](https://arxiv.org/abs/1908.08962)), and ported to HF for the study `Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics` ([arXiv](https://arxiv.org/abs/2110.01518)). These models are supposed to be trained on a downstream task.
20
 
21
  If you use the model, please consider citing both the papers:
22
  ```
 
48
  }
49
 
50
  ```
51
+ Config of this model:
52
+ - `prajjwal1/bert-medium` (L=8, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-medium)
53
+
54
+
55
 
56
  Other models to check out:
57
  - `prajjwal1/bert-tiny` (L=2, H=128) [Model Link](https://huggingface.co/prajjwal1/bert-tiny)
58
  - `prajjwal1/bert-mini` (L=4, H=256) [Model Link](https://huggingface.co/prajjwal1/bert-mini)
59
  - `prajjwal1/bert-small` (L=4, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-small)
 
60
 
61
  Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli).
62