Today I decided to see if that matters, and the results have me.. for lack of a better word, perplexed
My setup:
Mistral Nemo Instruct 2407
- convert to FP32, calculate imatrix, quantize to Q8_0 and Q4_K_M
- convert to FP16, calculate imatrix, quantize to Q8_0 and Q4_K_M
I calculated the kld base from the FP32 model:
./llama-perplexity -m /models/Mistral-Nemo-Instruct-2407-f32.gguf -f /training_data/wikitext-2-raw/wiki.test.raw --kl-divergence-base /training_data/mistral-nemo-f32.kld -ngl 35 -fa -sm row
then calculated the divergence itself for each like so:
./llama-perplexity -m /models/Mistral-Nemo-Instruct-2407-Q8_0.gguf -f /training_data/wikitext-2-raw/wiki.test.raw --kl-divergence-base /training_data/mistral-nemo-f32.kld --kl-divergence -ngl 50 -fa -sm row
Q4_K_M from fp16 and fp32 were similar, trading blows across statistics, odd since i expected fp32 to be strictly better but it's not
Q8_0 is where things get weird. Despite each file being slightly different size, and the sha256sum of course being different, they each get *completely identical* scores, down to 6 decimal places of precision on the statistics.
How is this possible? Is there something I don't understand about llama.cpp that makes it always convert to fp16 before it does quantization? Am I wasting time using FP32/BF16??