Update README.md
Browse files
README.md
CHANGED
@@ -6,4 +6,42 @@ library_name: transformers
|
|
6 |
pipeline_tag: zero-shot-classification
|
7 |
tags:
|
8 |
- ORTModelForSequenceClassification
|
9 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
pipeline_tag: zero-shot-classification
|
7 |
tags:
|
8 |
- ORTModelForSequenceClassification
|
9 |
+
---
|
10 |
+
|
11 |
+
# DeBERTa-v3-base-onnx-quantized
|
12 |
+
|
13 |
+
This model has been quantized using the base model: [sileod/deberta-v3-base-tasksource-nli](https://huggingface.co/sileod/deberta-v3-base-tasksource-nli), To use this model you need to have `onnxruntime` installed on your machine.
|
14 |
+
To use this model, you can check out my [Huggingface Spaces](https://huggingface.co/spaces/arnabdhar/Zero-Shot-Classification-DeBERTa-Quantized).
|
15 |
+
|
16 |
+
The source code for the Huggingface Application can be found on [GitHub](https://github.com/arnabd64/Zero-Shot-Text-Classification).
|
17 |
+
|
18 |
+
To run this model on your machine use the following code. Note that this model is optimized for CPU with AVX2 support.
|
19 |
+
|
20 |
+
1. Install dependencies
|
21 |
+
|
22 |
+
```bash
|
23 |
+
pip install transformers optimum[onnxruntime]
|
24 |
+
```
|
25 |
+
|
26 |
+
2. Run the model:
|
27 |
+
|
28 |
+
```python
|
29 |
+
# load libraries
|
30 |
+
from transformers import AutoTokenizer
|
31 |
+
from optimum.onnxruntime import ORTModelForSequenceClassification
|
32 |
+
from optimum.pipelines import pipeline
|
33 |
+
|
34 |
+
# load model components
|
35 |
+
MODEL_ID = "pitangent-ds/deberta-v3-nli-onnx-quantized"
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
37 |
+
model = ORTModelForSequenceClassification.from_pretrained(MODEL_ID)
|
38 |
+
|
39 |
+
# load the pipeline
|
40 |
+
classifier = pipeline("zero-shot-classification", tokenizer=tokenizer, model=model)
|
41 |
+
|
42 |
+
# inference
|
43 |
+
text = "The jacket that I bought is awesome"
|
44 |
+
candidate_labels = ["positive", "negative"]
|
45 |
+
|
46 |
+
results = classifier(text, candidate_labels)
|
47 |
+
```
|