# + from typing import Dict, List, Any from PIL import Image import torch import os from io import BytesIO from transformers import BlipForConditionalGeneration, BlipProcessor # - device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class EndpointHandler(): def __init__(self, path=""): # load the optimized model self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") self.model = BlipForConditionalGeneration.from_pretrained( "Salesforce/blip-image-captioning-base" ).to(device) self.model.eval() self.model = self.model.to(device) def __call__(self, data: Any) -> List[Dict[str, Any]]: """ Args: data (:obj:): binary image data to be labeled Return: A :obj:`list`:. The list contains an item with generated caption, like [{"generated_text": ["A hugging face at the office"]}] : - "generated_text": A string corresponding to the generated caption. """ inputs = data.pop("inputs", data) parameters = data.pop("parameters", {}) processed_image = self.processor(images=inputs, return_tensors="pt") processed_image["pixel_values"] = processed_image["pixel_values"].to(device) processed_image = {**processed_image, **parameters} with torch.no_grad(): out = self.model.generate( **processed_image ) captions = self.processor.batch_decode(out, skip_special_tokens=True) # postprocess the prediction return [{"generated_text": captions}]